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17. An urn contains five balls numbered 1, 2, 2, 8, and 8. If
a person selects a set of two balls at random, what is the
expected value of the sum of the numbers on the balls?

18. An urn contains five balls numbered 1, 2, 2, 8, and 8. If
a person selects a set of three balls at random, what is the
expected value of the sum of the numbers on the balls?

19. When a pair of balanced dice are rolled and the sum of the
numbers showing face up is computed, the result can be any
number from 2 to 12, inclusive. What is the expected value
of the sum?

20.H Suppose a person offers to play a game with you. In this
game, when you draw a card from a standard 52-card deck,
if the card is a face card you win $3, and if the card is any-
thing else you lose $1. If you agree to play the game, what
is your expected gain or loss?

21. A person pays $1 to play the following game: The person
tosses a fair coin four times. If no heads occur, the person
pays an additional $2, if one head occurs, the person pays

an additional $1, if two heads occur, the person just loses
the initial dollar, if three heads occur, the person wins $3,
and if four heads occur, the person wins $4. What is the
person’s expected gain or loss?

22.H A fair coin is tossed until either a head comes up or
four tails are obtained. What is the expected number of
tosses?

23.H A gambler repeatedly bets that a die will come up 6 when
rolled. Each time the die comes up 6, the gambler wins
$1; each time it does not, the gambler loses $1. He will
quit playing either when he is ruined or when he wins
$300. If Pn is the probability that the gambler is ruined
when he begins play with $n, then Pk−1 = 1

6 Pk + 5
6 Pk−2

for all integers k with 2 ≤ k ≤ 300. Also P0 = 1 and
P300 = 0. Find an explicit formula for Pn and use it to
calculate P20. (Exercise 33 in Section 9.9 asks you to derive
the recurrence relation.)

Answers for Test Yourself
1. 0; 1; 1; 0 2. P(A) + P(B) 3. 1− P(A) 4. P(A) + P(B)− P(A ∩ B) 5. a1 p1 + a2 p2 + · · · + an pn

9.9 Conditional Probability, Bayes’ Formula,
and Independent Events
It is remarkable that a science which began with the consideration of games of chance
should have become the most important object of human knowledge.. . . The most
important questions of life are, for the most part, really only problems of probability.
— Pierre-Simon Laplace 1749–1827

In this section we introduce the notion of conditional probability and discuss Bayes’
Theorem and the kind of interesting results to which it leads. We then define the concept
of independent events and give some applications.

Conditional Probability
Imagine a couple with two children, each of whom is equally likely to be a boy or a girl.
Now suppose you are given the information that one is a boy. What is the probability that
the other child is a boy?

Figure 9.9.1 shows the four equally likely combinations of gender for the children.
You can imagine that the first letter refers to the older child and the second letter to the

BB BG GB GG

Figure 9.9.1
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612 Chapter 9 Counting and Probability

younger. Thus the combination BG indicates that the older child is a boy and the younger
is a girl.

The combinations where one of the children is a boy are shaded gray, and the combi-
nation where the other child is also a boy is shaded blue-gray. Given that you know one
child is a boy, only the three combinations in the gray region could be the case, so you
can think of the set of those outcomes as a new sample space with three elements, all of
which are equally likely. Within the new sample space, there is one combination where
the other child is a boy (in the region shaded blue-gray). Thus it would be reasonable
to say that the likelihood that the other child is a boy, given that at least one is a boy, is
1/3 = 33 1

3 %. Note that because the original sample space contained four outcomes,

P(at least one child is a boy and the other child is also a boy)
P(at least one child is a boy)

=
1
4
3
4

= 1
3

also. A generalization of this observation forms the basis for the following definition.

• Definition

Let A and B be events in a sample space S. If P(A) ̸= 0, then the conditional
probability of B given A, denoted P(B | A), is

P(B | A) = P(A ∩ B)

P(A)
. 9.9.1

Example 9.9.1 Computing a Conditional Probability

A pair of fair dice, one blue and the other gray, are rolled. What is the probability that the
sum of the numbers showing face up is 8, given that both of the numbers are even?

Solution The sample space is the set of all 36 outcomes obtained from rolling the two
dice and noting the numbers showing face up on each. As in Section 9.1, denote by
ab the outcome that the number showing face up on the blue die is a and the one
on the gray die is b. Let A be the event that both numbers are even and B the event
that the sum of the numbers is 8. Then A = {22, 24, 26, 42, 44, 46, 62, 64, 66}, B =
{26, 35, 44, 53, 62}, and A ∩ B = {26, 44, 62}. Because the dice are fair (so all outcomes
are equally likely), P(A) = 9/36, P(B) = 5/36 and P(A ∩ B) = 3/36. By definition of
conditional probability,

P(B | A) = P(A ∩ B)

P(A)
=

3
36
9
36

= 3
9

= 1
3
. ■

Note that when both sides of the formula for conditional probability (formula 9.9.1)
are multiplied by P(A), a formula for P(A ∩ B) is obtained:

P(A ∩ B) = P(B | A) · P(A). 9.9.2

Dividing both sides of formula (9.9.2) by P(B | A) gives a formula for P(A):

P(A) = P(A ∩ B)

P(B | A)
. 9.9.3
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Example 9.9.2 Representing Conditional Probabilities with a Tree Diagram

An urn contains 5 blue and 7 gray balls. Let us say that 2 are chosen at random, one after
the other, without replacement.

a. Find the following probabilities and illustrate them with a tree diagram: the probability
that both balls are blue, the probability that the first ball is blue and the second is not
blue, the probability that the first ball is not blue and the second ball is blue, and the
probability that neither ball is blue.

b. What is the probability that the second ball is blue?

c. What is the probability that at least one of the balls is blue?

d. If the experiment of choosing two balls from the urn were repeated many times over,
what would be the expected value of the number of blue balls?

Solution Let S denote the sample space of all possible choices of two balls from the urn,
let B1 be the event that the first ball is blue, and let B2 be the event that the second ball is
blue. Then Bc

1 is the event that the first ball is not blue and Bc
2 is the event that the second

ball is not blue.

a. Because there are 12 balls of which 5 are blue and 7 are gray, the probability that the
first ball is blue is

P(B1) = 5
12

and the probability that the first ball is not blue is

P(B c
1 ) = 7

12
.

If the first ball is blue, then the urn would contain 4 blue balls and 7 gray balls, and so

P(B2 | B1) = 1
11

and P(B c
2 | B1) = 7

11
,

where P(B2 | B1) is the probability that the second ball is blue given that the first ball
is blue and P(B c

2 | B1) is the probability that the second ball is not blue given that the
first ball is blue. It follows from formula (9.9.2) that

P(B1 ∩ B2) = P(B2 | B1) · P(B1) = 4
11

· 5
12

= 20
132

and

P(B1 ∩ B c
2 ) = P(B c

2 | B1) · P(B1) = 7
11

· 5
12

= 35
132

.

Similarly, if the first ball is not blue, then the urn would contain 5 blue balls and 6 gray
balls, and so

P(B2 | B c
1 ) = 5

11
and P(B c

2 | B c
1 ) = 6

11
,

where P(B2 | B c
1 ) is the probability that the second ball is blue given that the first ball

is not blue and P(B c
2 | B c

1 ) is the probability that the second ball is not blue given that
the first ball is not blue. It follows from formula (9.9.2) that

P(B c
1 ∩ B2) = P(B2 | B c

1 ) · P(B c
1 ) = 5

11
· 7
12

= 35
132
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614 Chapter 9 Counting and Probability

and

P(B c
1 ∩ B c

2 ) = P(B c
2 | B c

1 ) · P(B c
1 ) = 6

11
· 7
12

= 42
132

.

The tree diagram in Figure 9.9.2 is a convenient way to help calculate these results.

P(B1) =
 —
5
12

P(B2
   B1) =

 —
4
11

4
11

5
12

20
132
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Figure 9.9.2

b. The event that the second ball is blue can occur in one of two mutually exclusive ways:
Either the first ball is blue and the second is also blue, or the first ball is gray and the
second is blue. In other words, B2 is the disjoint union of B2 ∩ B1 and B2 ∩ B c

1 . Hence

P(B2) = P
(
(B2 ∩ B1) ∪

(
B2 ∩ B c

1

))

= P(B2 ∩ B1) + P
(
B2 ∩ B c

1

)
by probability axiom 3

= 20
132

+ 35
132

by part (a)

= 55
132

= 5
12

.

Thus the probability that the second ball is blue is 5/12, the same as the probability
that the first ball is blue.

c. By formula 9.8.2, for the union of any two events,

P(B1 ∪ B2) = P(B1) + P(B2)− P(B1 ∩ B2)

= 5
12

+ 5
12
− 20

132
by parts (a) and (b)

= 90
132

= 15
22

.

Thus the probability is 15/22, or approximately 68.2%, that at least one of the balls
is blue.

d. The event that neither ball is blue is the complement of the event that at least one of
the balls is blue, so

P(0 blue balls) = 1− P (at least one ball is blue) by formula 9.8.1

= 1− 15
22

by part (c)

= 7
22

.
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9.9 Conditional Probability, Bayes’ Formula, and Independent Events 615

The event that one ball is blue can occur in one of two mutually exclusive ways: Either
the second ball is blue and the first is not, or the first ball is blue and the second is not.
Part (a) showed that the probability of the first way is 35

132 , and the probability of the
second way is also 35

132 . Thus, by probability axiom 3,

P(1 blue ball) = 35
132

+ 35
132

= 70
132

.

Finally, by part (a),

P(2 blue balls) = 20
132

.

Therefore,
[

the expected value of
the number of blue balls

]
= 0 · P(0 blue balls) + 1 · P(1 blue ball)

+ 2 · P(2 blue balls)

= 0 · 7
22

+ 1 · 70
132

+ 2 · 20
132

= 110
132

∼= 0.8. ■

Bayes’ Theorem
Suppose that one urn contains 3 blue and 4 gray balls and a second urn contains 5 blue
and 3 gray balls. A ball is selected by choosing one of the urns at random and then picking
a ball at random from that urn. If the chosen ball is blue, what is the probability that it
came from the first urn?

This problem can be solved by carefully interpreting all the information that is known
and putting it together in just the right way. Let A be the event that the chosen ball is blue,
B1 the event that the ball came from the first urn, and B2 the event that the ball came from
the second urn. Because 3 of the 7 balls in urn one are blue, and 5 of the 8 balls in urn
two are blue,

P(A | B1) = 3
7

and P(A | B2) = 5
8
.

And because the urns are equally likely to be chosen,

P(B1) = P(B2) = 1
2
.

Moreover, by formula (9.9.2),

P(A ∩ B1) = P(A | B1) · P(B1) = 3
7

· 1
2

= 3
14

, and

P(A ∩ B2) = P(A | B2) · P(B2) = 5
8

· 1
2

= 5
16

.

But A is the disjoint union of (A ∩ B1) and (A ∩ B2), so by probability axiom 3,

P(A) = P((A ∩ B1) ∪ (A ∩ B2)) = P(A ∩ B1) + P(A ∩ B2) = 3
14

+ 5
16

= 59
112

.
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616 Chapter 9 Counting and Probability

Finally, by definition of conditional probability,

P(B1 | A) = P(B1 ∩ A)

P(A)
=

3
14
59
112

= 336
826

∼= 40.7%.

Thus, if the chosen ball is blue, the probability is approximately 40.7% that it came from
the first urn.

Co
ur

te
sy

St
ep

he
n

St
ig

le
r

Thomas Bayes
(1702–1761)

The steps used to derive the answer in the previous example can be generalized to
prove Bayes’ Theorem. (See exercises 9.9 and 9.10 at the end of this section.) Thomas
Bayes was an English Presbyterian minister who devoted much of his energies to math-
ematics. The theorem that bears his name was published posthumously in 1763. The
portrait at the left is the only one attributed to him, but its authenticity has recently come
into question.

Theorem 9.9.1 Bayes’ Theorem

Suppose that a sample space S is a union of mutually disjoint events B1, B2, B3, . . . ,

Bn , suppose A is an event in S, and suppose A and all the B1 have nonzero probabil-
ities. If k is an integer with 1 ≤ k ≤ n, then

P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1) + P(A | B2)P(B2) + · · · + P(A | Bn)P(Bn)

Example 9.9.3 Applying Bayes’ Theorem

Most medical tests occasionally produce incorrect results, called false positives and false
negatives. When a test is designed to determine whether a patient has a certain disease,
a false positive result indicates that a patient has the disease when the patient does not
have it. A false negative result indicates that a patient does not have the disease when the
patient does have it.

When large-scale health screenings are performed for diseases with relatively low
incidence, those who develop the screening procedures have to balance several consid-
erations: the per-person cost of the screening, follow-up costs for further testing of false
positives, and the possibility that people who have the disease will develop unwarranted
confidence in the state of their health.

Consider a medical test that screens for a disease found in 5 people in 1,000. Suppose
that the false positive rate is 3% and the false negative rate is 1%. Then 99% of the time a
person who has the condition tests positive for it, and 97% of the time a person who does
not have the condition tests negative for it. (See exercise 4 at the end of this section.)

a. What is the probability that a randomly chosen person who tests positive for the dis-
ease actually has the disease?

b. What is the probability that a randomly chosen person who tests negative for the dis-
ease does not indeed have the disease?

Solution Consider a person chosen at random from among those screened. Let A be the
event that the person tests positive for the disease, B1 the event that the person actually
has the disease, and B2 the event that the person does not have the disease. Then

P(A | B1) = 0.99, P(Ac | B1) = 0.01, P(Ac | B2) = 0.97, and P(A | B2) = 0.03.

Also, because 5 people in 1,000 have the disease,

P(B1) = 0.005 and P(B2) = 0.995.
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9.9 Conditional Probability, Bayes’ Formula, and Independent Events 617

a. By Bayes’ Theorem,

P(B1 | A) = P(A | B1)P(B1)

P(A | B1)P(B1) + P(A | B2)P(B2)

= (0.99)(0.005)

(0.99)(0.005) + (0.03)(0.995)

∼= 0.1422 ∼= 14.2%.

Thus the probability that a person with a positive test result actually has the disease is
approximately 14.2%.

b. By Bayes’ Theorem,

P(B2 | Ac) = P(Ac | B2)P(B2)

P(Ac | B1)P(B1) + P(Ac | B2)P(B2)

= (0.97)(0.995)

(0.01)(0.005) + (0.97)(0.995)

∼= 0.999948 ∼= 99.995%.

Thus the probability that a person with a negative test result does not have the disease is
approximately 99.995%.

You might be surprised by these numbers, but they are fairly typical of the situation
where the screening test is significantly less expensive than a more accurate test for the
same disease yet produces positive results for nearly all people with the disease. Using
the screening test limits the expense of unnecessarily using the more costly test to a
relatively small percentage of the population being screened, while only rarely indicating
that a person who has the disease is free of it. ■

Independent Events
Suppose a coin is tossed twice. It seems intuitively clear that the outcome of the first toss
does not depend in any way on the outcome of the second toss, and conversely. In other
words, if, for instance, A is the event that a head is obtained on the first toss and B is
the event that a head is obtained on the second toss, then if the coin is tossed randomly
both times, events A and B should be independent in the sense that P(A | B) = P(A)

and P(B | A) = P(B). This intuitive idea of independence is supported by the following
analysis. If the coin is fair, then the four outcomes H H, H T, T H , and T T are equally
likely, and

A = {H H, H T }, B = {T H, H H}, A ∩ B = {H H}.
Hence

P(A) = P(B) = 2
4

= 1
2
.

But also

P(A | B) = P(A ∩ B)

P(B)
=

1
4
1
2

= 1
2

and P(B | A) = P(A ∩ B)

P(A)
=

1
4
1
2

= 1
2
,

and thus P(A | B) = P(A) and P(B | A) = P(B).
To obtain the final form for definition of independence, observe that

if P(B) ̸= 0 and P(A | B) = P(A), then P(A ∩ B) = P(A | B) · P(B) = P(A) · P(B).
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618 Chapter 9 Counting and Probability

By the same argument,

if P(A) ̸= 0 and P(B | A) = P(B), then P(A ∩ B) = P(A) · P(B).

Conversely (see exercise 18 at the end of this section),

if P(A ∩ B) = P(A) · P(B) and P(A) ̸= 0, then P(B | A) = P(B),

and

if P(A ∩ B) = P(A) · P(B) and P(B) ̸= 0, then P(A | B) = P(A).

Thus, for convenience and to eliminate the requirement that the probabilities be nonzero,
we use the following product formula to define independent events.

Note It would be
natural to think that
mutually disjoint events
would be independent,
but in fact almost the
opposite is true: Mutually
disjoint events with
nonzero probabilities are
dependent.

• Definition

If A and B are events in a sample space S, then A and B are independent if, and
only if,

P(A ∩ B) = P(A) · P(B).

Example 9.9.4 Disjoint Events and Independence

Let A and B be events in a sample space S, and suppose A ∩ B = ∅, P(A) ̸= 0, and
P(B) ̸= 0. Show that P(A ∩ B) ̸= P(A) · P(B).

Solution Because A ∩ B = ∅, P(A ∩ B) = 0 by probability axiom 2. But P(A) · P(B)

̸= 0 because neither P(A) nor P(B) equals zero. Thus P(A ∩ B) ̸= P(A) · P(B). ■

The following example, and its immediate consequence, show how the independence
of two events extends to their complements.

Example 9.9.5 The Probability of A ∩ Bc When A and B Are Independent Events

Suppose A and B are independent events in a sample space S. Show that A and Bc are
also independent.

Solution The solution for exercises 8 and 25 in Section 6.2 show that for all sets A and B,

(1) (A ∩ B) ∪ (A ∩ Bc) = A

and (2) (A ∩ B) ∩ (A ∩ Bc) = ∅
It follows that probability axiom 3 may be applied to equation (1) to obtain

P((A ∩ B) ∪ (A ∩ Bc)) = P(A ∩ B) + P(A ∩ Bc) = P(A).

Solving for P(A ∩ Bc) gives that

P(A ∩ Bc) = P(A)− P(A ∩ B)

= P(A)− P(A) · P(B) because A and B are independent

= P(A)(1− P(B)) by factoring out P(A)

= P(A) · P(Bc) by formula 9.8.1.

Thus A and Bc are independent events. ■
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It follows immediately from Example 9.9.5 that if A and B are independent, then
Ac and B are also independent and so are Ac and Bc. (See exercise 22 at the end of this
section.) These results are applied in Example 9.9.6.

Example 9.9.6 Computing Probabilities of Intersections of Two Independent Events

A coin is loaded so that the probability of heads is 0.6. Suppose the coin is tossed twice.
Although the probability of heads is greater than the probability of tails, there is no reason
to believe that whether the coin lands heads or tails on one toss will affect whether it lands
heads or tails on the other toss. Thus it is reasonable to assume that the results of the tosses
are independent.

a. What is the probability of obtaining two heads?

b. What is the probability of obtaining one head?

c. What is the probability of obtaining no heads?

d. What is the probability of obtaining at least one head?

Solution The sample space S consists of the four outcomes {H H, H T, T H, T T }, which
are not equally likely. Let E be the event that a head is obtained on the first toss, and let
F be the event that a head is obtained on the second toss. Then P(E) = P(F) = 0.6, and
it is to be assumed that E and F are independent.

a. The probability of obtaining two heads is P(E ∩ F). Because E and F are
independent,

P (two heads) = P(E ∩ F) = P(E) · P(F) = (0.6)(0.6) = 0.36 = 36%.

b. One head can be obtained in two mutually exclusive ways: head on the first toss and
tail on the second, or tail on the first toss and head on the second. Thus, the event of
obtaining exactly one head is (E ∩ Fc) ∪ (Ec ∩ F). Also (E ∩ Fc) ∩ (Ec ∩ F) = ∅,
and, moreover, by the formula for the probability of the complement of an event,
P(Ec) = P(Fc) = 1− 0.6 = 0.4. Hence

P(one head) = P((E ∩ Fc) ∪ (Ec ∩ F))

= P(E) · P(Fc) + P(Ec) · P(F) by Example 9.9.5 and exercise 22

= (0.6)(0.4) + (0.4)(0.6)

= 0.48 = 48%.

c. The probability of obtaining no heads is P(Ec ∩ Fc). By exercise 22,

P(no heads) = P(Ec ∩ Fc) = P(Ec) · P(Fc) = (0.4)(0.4) = 0.16 = 16%.

d. There are two ways to solve this problem. One is to observe that because the event of
obtaining one head and the event of obtaining two heads are mutually disjoint,

P(at least one head) = P(one head) + P(two heads)

= 0.48 + 0.36 by parts (a) and (b)

= 0.84 = 84%.

The second way is to use the fact that the event of obtaining at least one head is the
complement of the event of obtaining no heads. So

P(at least one head) = 1− P(no heads)

= 1− 0.16 by part (c)

= 0.84 = 84%. ■
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620 Chapter 9 Counting and Probability

Example 9.9.7 Expected Value of Tossing a Loaded Coin Twice

Suppose that a coin is loaded so that the probability of heads is 0.6, and suppose the coin
is tossed twice. If this experiment is repeated many times, what is the expected value of
the number of heads?

Solution Think of the outcomes of the coin tossings as just 0, 1, or 2 heads. Example 9.9.6
showed that the probabilities of these outcomes are 0.16, 0.48, and 0.36, respectively.
Thus, by definition of expected value, the

expected number of heads = 0 ·(0.16) + 1 ·(0.48) + 2 ·(0.36) = 1.2. ■

What if a loaded coin is tossed more than twice? Suppose it is tossed ten times, or a
hundred times. What are the probabilities of various numbers of heads? To answer this
question, it is necessary to expand the notion of independence to more than two events.
For instance, we say three events A, B, and C are pairwise independent if, and only if,

P(A ∩ B) = P(A) · P(B), P(A ∩ C) = P(A) · P(C), and P(B ∩ C) = P(B) · P(C).

The next example shows that events can be pairwise independent without satisfying the
condition P(A ∩ B ∩ C) = P(A) · P(B) · P(C). Conversely, they can satisfy the condi-
tion P(A ∩ B ∩ C) = P(A) · P(B) · P(C) without being pairwise independent (see exer-
cise 26 at the end of this section).

Example 9.9.8 Exploring Independence for Three Events

Suppose that a fair coin is tossed twice. Let A be the event that a head is obtained on the
first toss, B the event that a head is obtained on the second toss, and C the event that either
two heads or two tails are obtained. Show that A, B, and C are pairwise independent but
do not satisfy the condition P(A ∩ B ∩ C) = P(A) · P(B) · P(C).

Solution Because there are four equally likely outcomes—H H, H T, T H , and T T —it is
clear that P(A) = P(B) = P(C) = 1

2 . You can also see that A ∩ B = {H H},
A ∩ C = {H H}, B ∩ C = {H H}, and A ∩ B ∩ C = {H H}. Hence P(A ∩ B) =
P(A ∩ C) = P(B ∩ C) = 1

4 , and so P(A ∩ B) = P(A) · P(B), P(A ∩ C) =
P(A) · P(C), and P(B ∩ C) = P(B) · P(C). Thus A, B, and C are pairwise indepen-
dent. But

P(A ∩ B ∩ C) = P({H H}) = 1
4
̸=
(

1
2

)3

= P(A) · P(B) · P(C). ■

Because of situations like that in Example 9.9.8, four conditions must be included in
the definition of independence for three events.

• Definition

Let A, B, and C be events in a sample space S. A, B, and C are pairwise indepen-
dent if, and only if, they satisfy conditions 1–3 below. They are mutually
independent if, and only if, they satisfy all four conditions below.

1. P(A ∩ B) = P(A) · P(B)

2. P(A ∩ C) = P(A) · P(C)

3. P(B ∩ C) = P(B) · P(C)

4. P(A ∩ B ∩ C) = P(A) · P(B) · P(C)
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The definition of mutual independence for any collection of n events with n ≥ 2
generalizes the two definitions given previously.

• Definition

Events A1, A2, A3, . . . , An in a sample space S are mutually independent if, and
only if, the probability of the intersection of any subset of the events is the product
of the probabilities of the events in the subset.

Example 9.9.9 Tossing a Loaded Coin Ten Times

A coin is loaded so that the probability of heads is 0.6 (and thus the probability of tails is
0.4). Suppose the coin is tossed ten times. As in Example 9.9.6, it is reasonable to assume
that the results of the tosses are mutually independent.

a. What is the probability of obtaining eight heads?

b. What is the probability of obtaining at least eight heads?

Solution

a. For each i = 1, 2, . . . , 10, let Hi be the event that a head is obtained on the i th toss,
and let Ti be the event that a tail is obtained on the i th toss. Suppose that the eight
heads occur on the first eight tosses and that the remaining two tosses are tails. This
is the event H1 ∩ H2 ∩ H3 ∩ H4 ∩ H5 ∩ H6 ∩ H7 ∩ H8 ∩ T9 ∩ T10. For simplicity, we
denote it as H H H H H H H H T T . By definition of mutually independent events,

P(H H H H H H H H T T ) = (0.6)8(0.4)2.

Because of the commutative law for multiplication, if the eight heads occur on any
other of the ten tosses, the same number is obtained. For instance, if we denote the
event H1 ∩ H2 ∩ T3 ∩ H4 ∩ H5 ∩ H6 ∩ H7 ∩ H8 ∩ T9 ∩ H10 by H H T H H H H H T H ,
then

P(H H T H H H H H T H) = (0.6)2(0.4)(0.6)5(0.4)(0.6) = (0.6)8(0.4)2.

Now there are as many different ways to obtain eight heads in ten tosses as there are
subsets of eight elements (the toss numbers on which heads are obtained) that can be
chosen from a set of ten elements. This number is

(10
8

)
. It follows that, because the

different ways of obtaining eight heads are all mutually exclusive,

P(eight heads) =
(

10
8

)
(0.6)8(0.4)2.

b. By reasoning similar to that in part (a),

P(nine heads) =

⎡

⎣
the number of different
ways nine heads can be
obtained in ten tosses

⎤

⎦ ·(0.6)9(0.4)1 =
(

10
9

)
(0.6)9(0.4),

and

P(ten heads) =

⎡

⎣
the number of different
ways ten heads can be
obtained in ten tosses

⎤

⎦ ·(0.6)10(0.4)0 =
(

10
10

)
(0.6)10.
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Because obtaining eight, obtaining nine, and obtaining ten heads are mutually disjoint
events,

P(at least eight heads) = P(eight heads) + P(nine heads) + P(ten heads)

=
(

10
8

)
(0.6)8(0.4)2 +

(
10
9

)
(0.6)9(0.4) +

(
10
10

)
(0.6)10

∼= 0.167 = 16.7%. ■

Note the occurrence of the binomial coefficients
(n

k

)
in solutions to problems like the

one in Example 9.9.9. For that reason, probabilities of the form
(

n
k

)
pn−k(1− p)k,

where 0 ≤ p ≤ 1, are called binomial probabilities.

Note Binomial
probabilities occur in
situations with multiple,
mutually independent
repetitions of a random
process, all of which have
the same two possible
outcomes with the same
probabilities on each
repetition.

Test Yourself
1. If A and B are any events in a sample space S and

P(A) ̸= 0, then the conditional probability of B given A
is P(B | A) = _____.

2. Bayes’ theorem says that if a sample space S is a union of
mutually disjoint events B1, B2, . . . , Bn with nonzero prob-
abilities, if A is an event in S with P(A) ̸= 0, and if k is an
integer with 1 ≤ k ≤ n, then _____.

3. Events A and B in a sample space S are independent if, and
only if, _____.

4. Events A, B, and C in a sample space S are mutually inde-
pendent if, and only if, _____, _____, _____, and _____.

Exercise Set 9.9
1. Suppose P(A | B) = 1/2 and P(A ∩ B) = 1/6. What is

P(B)?

2. Suppose P(X | Y ) = 1/3 and P(Y ) = 1/4. What is
P(X ∩ Y )?

3.H The instructor of a discrete mathematics class gave two
tests. Twenty-five percent of the students received an A on
the first test and 15% of the students received A’s on both
tests. What percent of the students who received A’s on the
first test also received A’s on the second test?

4. a. Prove that if A and B are any events in a sample space
S, with P(B) ̸= 0, then P(Ac | B) = 1− P(A | B).

b. Explain how this result justifies the following state-
ments: (1) If the probability of a false positive on a test
for a condition is 4%, then there is a 96% probability
that a person who does not have the condition will have
a negative test result. (2) If the probability of a false neg-
ative on a test for a condition is 1%, then there is a 99%
probability that a person who does have the condition
will test positive for it.

5.H Suppose that A and B are events in a sample space S and
that P(A), P(B), and P(A | B) are known. Derive a for-
mula for P(A | Bc).

6. An urn contains 25 red balls and 15 blue balls. Two are
chosen at random, one after the other, without replacement.

a. Use a tree diagram to help calculate the following prob-
abilities: the probability that both balls are red, the prob-
ability that the first ball is red and the second is not, the
probability that the first ball is not red and the second is
red, the probability that neither ball is red.

b. What is the probability that the second ball is red?
c. What is the probability that at least one of the balls is

red?

7. Redo exercise 6 assuming that the urn contains 30 red balls
and 40 blue balls.

8. A pool of 10 semifinalists for a job consists of 7 men and
3 women. Because all are considered equally qualified, the
names of two of the semifinalists are drawn, one after the
other, at random, to become finalists for the job.
a. What is the probability that both finalists are women?
b. What is the probability that both finalists are men?
c.H What is the probability that one finalist is a woman and

the other is a man?

9.H Prove Bayes’ Theorem for n = 2. That is, prove that if a
sample space S is a union of mutually disjoint events B1

and B2, if A is an event in S with P(A) ̸= 0, and if k = 1
or k = 2, then

P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1) + P(A | B2)P(B2)
.
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10. Prove the full version of Bayes’ Theorem.

11. One urn contains 12 blue balls and 7 white balls, and a sec-
ond urn contains 8 blue balls and 19 white balls. An urn is
selected at random, and a ball is chosen from the urn.
a. What is the probability that the chosen ball is blue?
b. If the chosen ball is blue, what is the probability that it

came from the first urn?

12. Redo exercise 11 assuming that the first urn contains 4 blue
balls and 16 white balls and the second urn contains 10 blue
balls and 9 white balls.

13.H One urn contains 10 red balls and 25 green balls, and a sec-
ond urn contains 22 red balls and 15 green balls. A ball
is chosen as follows: First an urn is selected by tossing a
loaded coin with probability 0.4 of landing heads up and
probability 0.6 of landing tails up. If the coin lands heads
up, the first urn is chosen; otherwise, the second urn is cho-
sen. Then a ball is picked at random from the chosen urn.
a. What is the probability that the chosen ball is green?
b. If the chosen ball is green, what is the probability that it

was picked from the first urn?

14. A drug-screening test is used in a large population of peo-
ple of whom 4% actually use drugs. Suppose that the false
positive rate is 3% and the false negative rate is 2%. Thus
a person who uses drugs tests positive for them 98% of the
time, and a person who does not use drugs tests negative for
them 987% of the time.
a. What is the probability that a randomly chosen person

who tests positive for drugs actually uses drugs?
b. What is the probability that a randomly chosen person

who tests negative for drugs does not use drugs?

15. Two different factories both produce a certain automobile
part. The probability that a component from the first fac-
tory is defective is 2%, and the probability that a compo-
nent from the second factory is defective is 5%. In a supply
of 180 of the parts, 100 were obtained from the first factory
and 80 from the second factory.
a. What is the probability that a part chosen at random from

the 180 is from the first factory?
b. What is the probability that a part chosen at random from

the 180 is from the second factory?
c. What is the probability that a part chosen at random from

the 180 is defective?
d. If the chosen part is defective, what is the probability

that it came from the first factory?

16.H Three different suppliers—X, Y , and Z—provide produce
for a grocery store. Twelve percent of produce from X is
superior grade, 8% of produce from Y is superior grade and
15% of produce from Z is superior grade. The store obtains
20% of its produce from X , 45% from Y , and 35% from Z .
a. If a piece of produce is purchased, what is the probabil-

ity that it is superior grade?
b. If a piece of produce in the store is superior grade, what

is the probability that it is from X?

17. Prove that if A and B are events in a sample space S with
the property that P(A | B) = P(A) and P(A) ̸= 0, then
P(B | A) = P(B).

18. Prove that if P(A ∩ B) = P(A) · P(B), P(A) ̸= 0, and
P(B) ̸= 0, then P(A | B) = P(A) and P(B | A) = P(B).

19. A pair of fair dice, one blue and the other gray, are rolled.
Let A be the event that the number face up on the blue
die is 2, and let B be the event that the number face up
on the gray die is 4 or 5. Show that P(A | B) = P(A) and
P(B | A) = P(B).

20. Suppose a fair coin is tossed three times. Let A be the
event that a head appears on the first toss, and let B be the
event that an even number of heads is obtained. Show that
P(A | B) = P(A) and P(B | A) = P(B).

21. If A and B are events in a sample space S and A ∩ B = ∅,
what must be true in order for A and B to be independent?
Explain.

22. Prove that if A and B are independent events in a sample
space S, then Ac and B are also independent, and so are Ac

and Bc.

23. A student taking a multiple-choice exam does not know
the answers to two questions. All have five choices for the
answer. For one of the two questions, the student can elim-
inate two answer choices as incorrect but has no idea about
the other answer choices. For the other question, the stu-
dent has no clue about the correct answer at all. Assume
that whether the student chooses the correct answer on one
of the questions does not affect whether the student chooses
the correct answer on the other question.
a. What is the probability that the student will answer both

questions correctly?
b. What is the probability that the student will answer

exactly one of the questions correctly?
c. What is the probability that the student will answer nei-

ther question correctly?

24. A company uses two proofreaders X and Y to check a cer-
tain manuscript. X misses 12% of typographical errors and
Y misses 15%. Assume that the proofreaders work indepen-
dently.
a. What is the probability that a randomly chosen typo-

graphical error will be missed by both proofreaders?
b. If the manuscript contains 1,000 typographical errors,

what number can be expected to be missed?

25. A coin is loaded so that the probability of heads is 0.7
and the probability of tails is 0.3. Suppose that the coin
is tossed twice and that the results of the tosses are
independent.
a. What is the probability of obtaining exactly two heads?
b. What is the probability of obtaining exactly one head?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least one head?

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



624 Chapter 9 Counting and Probability

26.✶ Describe a sample space and events A, B, and C , where
P(A ∩ B ∩ C) = P(A) · P(B) · P(C) but A, B, and C are
not pairwise independent.

27.H The example used to introduce conditional probability
described a family with two children each of whom was
equally likely to be a boy or a girl. The example showed that
if it is known that one child is a boy, the probability that the
other child is a boy is 1/3. Now imagine the same kind of
family—two children each of whom is equally likely to be a
boy or a girl. Suppose you meet one of the children and see
that it is a boy. What is the probability that the other child is
a boy? Explain. (Be careful. The answer may surprise you.)

28. A coin is loaded so that the probability of heads is 0.7 and
the probability of tails is 0.3. Suppose that the coin is tossed
ten times and that the results of the tosses are mutually inde-
pendent.
a. What is the probability of obtaining exactly seven

heads?
b. What is the probability of obtaining exactly ten heads?
c. What is the probability of obtaining no heads?
d. What is the probability of obtaining at least one head?

29. Suppose that ten items are chosen at random from a large
batch delivered to a company. The manufacturer claims that
just 3% of the items in the batch are defective. Assume that
the batch is large enough so that even though the selection
is made without replacement, the number 0.03 can be used
to approximate the probability that any one of the ten items
is defective. In addition, assume that because the items are
chosen at random, the outcomes of the choices are mutually
independent. Finally, assume that the manufacturer’s claim
is correct.
a. What is the probability that none of the ten is defective?
b. What is the probability that at least one of the ten is

defective?
c. What is the probability that exactly four of the ten are

defective?
d. What is the probability that at most two of the ten are

defective?

30. Suppose the probability of a false positive result on a
mammogram is 4% and that radiologists’ interpretations of
mammograms are mutually independent in the sense that
whether or not a radiologist finds a positive result on one
mammogram does not influence whether or not the radiolo-
gist finds a positive result on another mammogram. Assume
that a woman has a mammogram every year for ten years.
a. What is the probability that she will have no false posi-

tive results during that time?

b. What is the probability that she will have at least one
false positive result during that time?

c. What is the probability that she will have exactly two
false positive results during that time?

d. Suppose that the probability of a false negative result
on a mammogram is 2%, and assume that the probabil-
ity that a randomly chosen woman has breast cancer is
0.0002.
(i) If a woman has a positive test result one year, what

is the probability that she actually has breast cancer?
(ii) If a woman has a negative test result one year, what

is the probability that she actually has breast cancer?

31. Empirical data indicate that approximately 103 out of every
200 children born are male. Hence the probability of a new-
born being male is about 51.5%. Suppose that a family has
six children, and suppose that the genders of all the children
are mutually independent.
a.H What is the probability that none of the children is male?
b. What is the probability that at least one of the children

is male?
c. What is the probability that exactly five of the children

are male?

32. A person takes a multiple-choice exam in which each ques-
tion has four possible answers. Suppose that the person has
no idea about the answers to three of the questions and sim-
ply chooses randomly for each one.
a. What is the probability that the person will answer all

three questions correctly?
b. What is the probability that the person will answer

exactly two questions correctly?
c. What is the probability that the person will answer

exactly one question correctly?
d. What is the probability that the person will answer no

questions correctly?
e. Suppose that the person gets one point of credit for each

correct answer and that 1/3 point is deducted for each
incorrect answer. What is the expected value of the per-
son’s score for the three questions?

33. In exercise 23 of Section 9.8, let Ck be the event that the
gambler has k dollars, wins the next roll of the die, and
is eventually ruined, let Dk be the event that the gambler
has k dollars, loses the next roll of the die, and is even-
tually ruined, and let Pn be the probability that the gam-
bler is eventually ruined. Use the probability axioms and
the definition of conditional probability to derive the equa-
tion Pk−1 = 1

6 Pk + 5
6 Pk−2.

Answers for Test Yourself

1.
P(A ∩ B)

P(A)
2. P(Bk | A) = P(A | Bk)P(Bk)

P(A | B1)P(B1) + P(A | B2)P(B2) + · · · + P(A | Bn)P(Bn)
3. P(A ∩ B) = P(A) · P(B)

4. P(A ∩ B) = P(A) · P(B); P(A ∩ C) = P(A) · P(C); P(B ∩ C) = P(B) · P(C); P(A ∩ B ∩ C) = P(A) · P(B) · P(C)
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