
CS5220 Advanced Topics in Web
Programming
Object-Relational Mapping with Hibernate and JPA (I)

Chengyu Sun
California State University, Los Angeles

The Object-Oriented Paradigm

The world consists of objects
So we use object-oriented languages to
write applications
We want to store some of the
application objects (a.k.a. persistent
objects)
So we use a Object Database?

The Reality of DBMS

Relational DBMS are still predominant
 Most reliable (ACID)
 Standardized access (SQL)
 Widest support
Bridge between OO applications and
relational databases
 CLI and embedded SQL
 Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)
Application interacts with database through
functions calls

String sql = "select name from items where id = 1";

Connection c = DriverManager.getConnection(url);
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.println(rs.getString(“name”));

Embedded SQL
SQL statements are embedded in host
language

String name;
#sql {select name into :name from items where id = 1};
System.out.println(name);

Employee – Application Object

public class Employee {

Integer id;
String name;
Employee supervisor;

}

Employee – Database Table

create table employees (

id integer primary key,
name varchar(255),
supervisor_id integer references employees(id)

);

From Database to Application

So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;
String name;
Employee supervisor;

public Employee(Integer id)
{

// access database to get name and supervisor
… …

}
}

Problems with CLI and
Embedded SQL …

SQL statements are hard-coded in
applications

public Employee(Integer id) {
…
PreparedStatment p;
p = connection.prepareStatment(

“select * from employees where id = ?”
);
…

}

… Problems with CLI and
Embedded SQL …

Tedious translation between application
objects and database tables

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

name = rs.getString(“name”);
…

}
}

… Problems with CLI and
Embedded SQL

Application design has to work around
the limitations of relational DBMS

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

…
supervisor = ??

}
}

The ORM Approach

customer
employee

account

Application

Relational Databases

ORM tool

PostgreSQL, MySQL, Oracle,
SQL Server …

Hibernate and JPA

Java Persistence API (JPA)
 Annotations for object-relational mapping
 Data access API
 An object-oriented query language JPQL
Hibernate
 The most popular Java ORM library
 An implementation of JPA

Hibernate Usage

Hibernate without JPA
 API: SessionFactory, Session, Query,
Transaction

 More features
Hibernate with JPA
 API: EntityManagerFactory,
EntityManager, Query, Transaction

 Better portability
 Behaviors are better defined and documented

A Hibernate Example
Java class
 Employee.java

Code to access the database
 EmployeeTest.java

JPA configuration file
 persistence.xml

(Optional) Logging configuration file
 log4j.properties

Persistent Class

A class whose objects need to be saved (i.e.
persisted) in a database
Any Java model class can be a persistent
class, though it is recommended that
 Each persistent class has an identity field
 Each persistent class implements the Serializable

interface
 Each persistent field has a pair of getter and

setter, which don’t have to be public

O/R Mapping Annotations

Describe how Java classes are mapped to
relational tables

@Entity Persistent Java Class

@Id Id field

@Basic (can be omitted) Fields of simple types

@ManyToOne
@OneToMany
@ManyToMany
@OneToOne

Fields of class types

persistence.xml

<persistence-unit>
 name

<properties>
 Database information
 Provider-specific properties
No need to specify persistent classes

Access Persistent Objects

EntityManagerFactory

EntityManager
Query and TypedQuery
Transaction
 A transaction is required for updates

Some EntityManager Methods

find(entityClass, primaryKey)
merge(entity), persist(entity)
getTransaction()
createQuery(query, resultClass)

https://docs.jboss.org/hibernate/jpa/2.2/api/javax/persistence/EntityManager.html

https://docs.jboss.org/hibernate/jpa/2.2/api/javax/persistence/EntityManager.html

States of Persistent Objects
entityManager = entityManagerFactory

.createEntityManager();

Foo f1 = entityManager.find(Foo.class, 1);
// f1 is a managed object

Foo f2 = new Foo();
// f2 is an unmanaged (i.e. new) object

entityManager.close();
// f1 become detached

ORM “magic”
only works on
managed objects

How merge() Works

If f1 is a managed object, the returned
f2 is the same as f1
If f1 is an unmanaged or detached
object, the returned f2 is a managed
object which is a copy of f1

Foo f2 = entityManager.merge(f1);

Java Persistence Query
Language (JPQL)

A query language that looks like SQL,
but for accessing objects
Automatically translated to DB-specific
SQL statements
E.g. select e from Employee e
where supervisor =
:supervisor

See Chapter 4 of Java Persistence API, Version 2.1

Hibernate Query Language
(HQL)

A superset of JPQL
http://docs.jboss.org/hibernate/orm/cur
rent/userguide/html_single/Hibernate_U
ser_Guide.html#hql
See DaoImpl code in CSNS2 for more
examples

http://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#hql
https://github.com/cysun/csns2

Benefits of ORM
Remove the mismatch between OO design in
application and relational design in database
Simplify data access
 Data is accessed as objects, i.e. no manual conversion

between objects and rows/columns necessary
 JPQL/HQL queries are usually simpler than SQL queries
 Often times queries are automatically generated by the ORM

tool, e.g.
e.getSupervisor().getSupervisor().getName()

Improve DBMS independency
Object caching

	CS5220 Advanced Topics in Web Programming�Object-Relational Mapping with Hibernate and JPA (I)
	The Object-Oriented Paradigm
	The Reality of DBMS
	Call-Level Interface (CLI)
	Embedded SQL
	Employee – Application Object
	Employee – Database Table
	From Database to Application
	Problems with CLI and Embedded SQL …
	… Problems with CLI and Embedded SQL …
	… Problems with CLI and Embedded SQL
	The ORM Approach
	Hibernate and JPA
	Hibernate Usage
	A Hibernate Example
	Persistent Class
	O/R Mapping Annotations
	persistence.xml
	Access Persistent Objects
	Some EntityManager Methods
	States of Persistent Objects
	How merge() Works
	Java Persistence Query Language (JPQL)
	Hibernate Query Language (HQL)
	Benefits of ORM

