
CS5220 Advanced Topics in Web
Programming
Object-Relational Mapping with Hibernate and JPA (I)

Chengyu Sun
California State University, Los Angeles

The Object-Oriented Paradigm

The world consists of objects
So we use object-oriented languages to
write applications
We want to store some of the
application objects (a.k.a. persistent
objects)
So we use a Object Database?

The Reality of DBMS

Relational DBMS are still predominant
 Most reliable (ACID)
 Standardized access (SQL)
 Widest support
Bridge between OO applications and
relational databases
 CLI and embedded SQL
 Object-Relational Mapping (ORM) tools

Call-Level Interface (CLI)
Application interacts with database through
functions calls

String sql = "select name from items where id = 1";

Connection c = DriverManager.getConnection(url);
Statement stmt = c.createStatement();
ResultSet rs = stmt.executeQuery(sql);

if(rs.next()) System.out.println(rs.getString(“name”));

Embedded SQL
SQL statements are embedded in host
language

String name;
#sql {select name into :name from items where id = 1};
System.out.println(name);

Employee – Application Object

public class Employee {

Integer id;
String name;
Employee supervisor;

}

Employee – Database Table

create table employees (

id integer primary key,
name varchar(255),
supervisor_id integer references employees(id)

);

From Database to Application

So how do we construct an Employee object
based on the data from the database?

public class Employee {

Integer id;
String name;
Employee supervisor;

public Employee(Integer id)
{

// access database to get name and supervisor
… …

}
}

Problems with CLI and
Embedded SQL …

SQL statements are hard-coded in
applications

public Employee(Integer id) {
…
PreparedStatment p;
p = connection.prepareStatment(

“select * from employees where id = ?”
);
…

}

… Problems with CLI and
Embedded SQL …

Tedious translation between application
objects and database tables

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

name = rs.getString(“name”);
…

}
}

… Problems with CLI and
Embedded SQL

Application design has to work around
the limitations of relational DBMS

public Employee(Integer id) {
…
ResultSet rs = p.executeQuery();
if(rs.next())
{

…
supervisor = ??

}
}

The ORM Approach

customer
employee

account

Application

Relational Databases

ORM tool

PostgreSQL, MySQL, Oracle,
SQL Server …

Hibernate and JPA

Java Persistence API (JPA)
 Annotations for object-relational mapping
 Data access API
 An object-oriented query language JPQL
Hibernate
 The most popular Java ORM library
 An implementation of JPA

Hibernate Usage

Hibernate without JPA
 API: SessionFactory, Session, Query,
Transaction

 More features
Hibernate with JPA
 API: EntityManagerFactory,
EntityManager, Query, Transaction

 Better portability
 Behaviors are better defined and documented

A Hibernate Example
Java class
 Employee.java

Code to access the database
 EmployeeTest.java

JPA configuration file
 persistence.xml

(Optional) Logging configuration file
 log4j.properties

Persistent Class

A class whose objects need to be saved (i.e.
persisted) in a database
Any Java model class can be a persistent
class, though it is recommended that
 Each persistent class has an identity field
 Each persistent class implements the Serializable

interface
 Each persistent field has a pair of getter and

setter, which don’t have to be public

O/R Mapping Annotations

Describe how Java classes are mapped to
relational tables

@Entity Persistent Java Class

@Id Id field

@Basic (can be omitted) Fields of simple types

@ManyToOne
@OneToMany
@ManyToMany
@OneToOne

Fields of class types

persistence.xml

<persistence-unit>
 name

<properties>
 Database information
 Provider-specific properties
No need to specify persistent classes

Access Persistent Objects

EntityManagerFactory

EntityManager
Query and TypedQuery
Transaction
 A transaction is required for updates

Some EntityManager Methods

find(entityClass, primaryKey)
merge(entity), persist(entity)
getTransaction()
createQuery(query, resultClass)

https://docs.jboss.org/hibernate/jpa/2.2/api/javax/persistence/EntityManager.html

https://docs.jboss.org/hibernate/jpa/2.2/api/javax/persistence/EntityManager.html

States of Persistent Objects
entityManager = entityManagerFactory

.createEntityManager();

Foo f1 = entityManager.find(Foo.class, 1);
// f1 is a managed object

Foo f2 = new Foo();
// f2 is an unmanaged (i.e. new) object

entityManager.close();
// f1 become detached

ORM “magic”
only works on
managed objects

How merge() Works

If f1 is a managed object, the returned
f2 is the same as f1
If f1 is an unmanaged or detached
object, the returned f2 is a managed
object which is a copy of f1

Foo f2 = entityManager.merge(f1);

Java Persistence Query
Language (JPQL)

A query language that looks like SQL,
but for accessing objects
Automatically translated to DB-specific
SQL statements
E.g. select e from Employee e
where supervisor =
:supervisor

See Chapter 4 of Java Persistence API, Version 2.1

Hibernate Query Language
(HQL)

A superset of JPQL
http://docs.jboss.org/hibernate/orm/cur
rent/userguide/html_single/Hibernate_U
ser_Guide.html#hql
See DaoImpl code in CSNS2 for more
examples

http://docs.jboss.org/hibernate/orm/current/userguide/html_single/Hibernate_User_Guide.html#hql
https://github.com/cysun/csns2

Benefits of ORM
Remove the mismatch between OO design in
application and relational design in database
Simplify data access
 Data is accessed as objects, i.e. no manual conversion

between objects and rows/columns necessary
 JPQL/HQL queries are usually simpler than SQL queries
 Often times queries are automatically generated by the ORM

tool, e.g.
e.getSupervisor().getSupervisor().getName()

Improve DBMS independency
Object caching

	CS5220 Advanced Topics in Web Programming�Object-Relational Mapping with Hibernate and JPA (I)
	The Object-Oriented Paradigm
	The Reality of DBMS
	Call-Level Interface (CLI)
	Embedded SQL
	Employee – Application Object
	Employee – Database Table
	From Database to Application
	Problems with CLI and Embedded SQL …
	… Problems with CLI and Embedded SQL …
	… Problems with CLI and Embedded SQL
	The ORM Approach
	Hibernate and JPA
	Hibernate Usage
	A Hibernate Example
	Persistent Class
	O/R Mapping Annotations
	persistence.xml
	Access Persistent Objects
	Some EntityManager Methods
	States of Persistent Objects
	How merge() Works
	Java Persistence Query Language (JPQL)
	Hibernate Query Language (HQL)
	Benefits of ORM

