CS5220 Advanced Topics in Web Programming Entity-Relationship Model

Chengyu Sun California State University, Los Angeles

Designing Tables Is Not Easy

Problem in Real World

Tables in RDBM

#4	Som	e Restau	irant	
Date: Jul 09, 2008 Server: John Bill: 0060)8 Time # of Table	Time: 03:07PM # of Guest: 2 Table: 42	
1 1 1	Boiled Pork Wanton Dumpling w/Crabmeat Beef Noodle Soup		4.95 8.00 6.80	
		Subtotal: GST:	19.75 0.99	
	Total:		20.74	
Open Time: Jul 09, 2008 02:57PM Printed by: Cashier				

Entity-Relationship (ER) Model Problem — FR Model — Tables An OO-like approach Easily converted to relational model ♦ A visual representation of the design – ER Diagram

Example: Problem Description

Student id, name, address Department id, name Classes id, name, term, section number Class offerings and enrollment

Entity Set and Attributes

- Entity Set is similar to class in an OO language
- Attributes are the properties of an entity set
 - Similar to the class fields in an OO language
 - Must have simple values like numbers or strings, i.e. cannot be collection or composite type

Keys

A key is an attribute or a set of attributes that *uniquely* identify an entity in an entity set.

Each entity set must have a key

If there are multiple keys, choose one of them as the primary key (i.e. the underlined attribute(s) in an ER diagram)

Types of Relationships

Many-to-Many
 Many-to-One / One-to-Many
 One-to-One

Many-to-Many Relationship

 Each entity in E₁ can be related to <u>many</u> entities in E₂
 Each entity in E₂ can be related to <u>many</u> entities in E₁

Many-to-One Relationship

 Each entity in E₁ can be related to <u>one</u> entities in E₂
 Each entity in E₂ can be related to <u>many</u> entities in E₁

One-to-One Relationship

 Each entity in E₁ can be related to <u>one</u> entities in E₂
 Each entity in E₂ can be related to <u>one</u> entities in E₁

Relationship Type Examples

Students and classes??
Departments and classes??
Person and Favorite movie??

An arrow is used to indicate the "one" side

Data in a Relationship

Design Example: Company Database

Design a database for a company to keep track of their employees and projects. Each employees has an id, first name, last name, and date hired. Each project has a leader and a number of members, who are all employees.

ER Design (I)

Step 1: identify entity sets, attributes, and relationships

ER Design Tips

Nouns tend to be entity sets or attributes

- Attribute: something can be represented by a single value, e.g. first name
- Entity set: something includes multiple values, e.g. employee
- Verbs tend to be relationships, e.g. students take classes
- Something looks like an attribute but is an <u>entity or collection</u> must also be a relationship, e.g. project leader and members

Employees and Supervisors

Each employee has a supervisorA supervisor is an employee

Roles

An entity set may appear in the same relationship more than once.

Label the edges with names called Roles

What's the key for *Players*??

Weak Entity Set

Entity set E is said to be *weak* if in order to identify entities of E uniquely, we need to follow one or more manyone relationships from E and include the key of the related entities from the connected entity sets.

The key of a weak entity set consists of its own key attributes and the key attributes of the supporting set

In ER design, a subclass is only needed if it has more attributes than the superclass.

When to Use (and When Not to Use) Subclass

- A: salaried employees and hourly employees
- B: administrator users and regular users
- C: pop songs and country songs
- D: beer and wine

Basic Rules of ER to Relational Conversion ...

An entity set is converted to a table • Entity set name \rightarrow table name • Entity set attributes \rightarrow table columns • Entity set key \rightarrow table key A many-to-many relationship is also converted to a table that includes the key attributes from the associated entity sets

... Basic Rules of ER to Relational Conversion

A many-to-one relationship is converted to a foreign key column on the "many" side referencing the "one" side

Classes (id, name, term, section, department_id)

About Foreign Key

Foreign key in relational model

 Represents a connection of two tables
 A data integrity constraint

 There is NO foreign key in ER model, because the connection is already expressed as a relationship

Basic ER to Relational Conversion Steps

Step 1: convert entity sets to tables
 Step 2: convert relationships

 Many-to-many → table
 Many-to-one → foreign key column

 Step 3: rename tables and columns if necessary

Example: Convert ER to Relational

ER to Relational (I)

Employees(id, first_name, last_name, date_hired)
Projects(id, name)

ER to Relational (II)

Employees(id, first_name, last_name, date_hired)
Projects(id, name, Employees_id)
Participate(Employees_id, Projects_id)

ER to Relational (III)

Employees(id, first_name, last_name, date_hired) Projects(id, name, leader_id) Project_Members(Employee_id, Project_id)

Converting One-to-One Relationship ...

... Converting One-to-One Relationship

Which one of the following is better??

id of the department for which this faculty is the chair

Faculty(<u>id</u>, name, department_id) Departments(<u>id</u>, name)

or

Faculty(<u>id</u>, name) Departments(<u>id</u>, name, faculty_id) *id of the faculty who chairs this department*

Converting Relationship with Roles

Converting Weak Entity Set ...

The table for a weak entity set includes its complete key as well as it's own nonkey attributes

A supporting relationship is redundant and yields no relation

... Converting Weak Entity Set

Converting Subclass ...

... Converting Subclass

Object-oriented approach

- One table per concrete class
- Each entity belongs to exact one table
- ER approach
 - One table per subclass
 - Each entity may appear in multiple tables
- NULL approach
 - One table per class hierarchy

Object-Oriented Approach

id	name
1000	John

Users

id	name	cin
1001	Jane	212345678

Students

ER Approach

id	name
1000	John
1001	Jane

Users

user_id	cin
1001	212345678

Students

NULL Approach ...

id	name	cin
1000	John	NULL
1001	Jane	212345678

Users

... NULL Approach

Discriminator field

id	user_type	name	cin
1000	staff	John	NULL
1001	student	Jane	212345677

Users

Comparison of Subclass Conversion Approaches

Constraints and data integrityQuery performance

Q1: list all studentsQ2: list all non-student usersQ3: list all users

Exercise

The HBO show Game of Thrones has lots of characters. Design a database that helps people to keep track of the characters and their relationships illustrated in this figure