
CS5220 Advanced Topics in Web
Programming
REST API with Spring Boot

Chengyu Sun
California State University, Los Angeles

JSON (JavaScript Object
Notation)

Used as a data
exchange format
Based on a subset
of JavaScript syntax
 Strings are double

quoted
 Property keys are

strings

{
"make": "Honda",
"model": "Civic",
"year": 2001,
"owner": {
"name": "Chengyu"

}
}

HTTP Request Example
POST /products HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 ...
Accept: application/xml
Accept-Encoding: gzip,deflate
Accept-Charset: utf-8
Content-Type: application/json
Content-Length: …

{"name": "Milk",
"price": 3.99,
"quantity": 10}

Request Line

Headers

Body
(Optional)

Request Components
Commonly Used in REST API

Request Method for representing operations
Request URI for representing resources
Request Body for sending data to the web
API
Accept header for preferred response
format
Content-Type header for the format of the
data in request body

HTTP Response Example

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: …
Date: Sun, 03 Oct 2017 18:26:57 GMT
Server: Apache-Coyote/1.1

{"id": 100,
"name": "Milk",
"price": 3.99,
"quantity": 10}

Status Line

Headers

Body
(Optional)

Response Components
Commonly Used in REST API

Status Code to indicate the completion
status of the operation
Response Body for the "return value" of
the API call
Content-Type header for the format
of the data in response body

Common Status Code

Success codes
 200 OK
 201 Created
 204 No Content

Error codes
 400 Bad Request
 401 Unauthorized
 403 Forbidden
 404 Not Found
 500 Internal Server Error

Use them in
appropriate
situations

REST API Example

Employee Management
 List
 Get
 Add
 Update
 Delete

A REST API Endpoint

Get user with id: /users/{id}

<user>
<id>1</id>
<firstName>John</firstName>
<lastName>Doe</lastName>
<email>jdoe1@localhost</email>

</user>

Request

XML Response or JSON Response

{
"id": 1,
"firstName": "John",
"lastName": "Doe",
"email": "jdoe1@localhost"

}

Design A REST API Endpoint

getUser(int id) User object

GET /users/{id} response

Action Resource Parameter Result

Object Format

XML
 Already widely in use as

a platform independent
data exchange format

 XML parsers are readily
available in many
languages

JSON
 Much more concise than

XML
 Can be used directly in

JavaScript

Data format should be easily
"understandable" by all programming
languages

A REST API Endpoint Example

Operation: get an employee
URL
 /users/{id} √
 /getUser?id={id} ×

REST API Design Conventions

Use URL to represent resource
Use request method to represent action
Use request headers for content type
and content negotiation
Use response status code for result
status

Use URL to Represent
Resource …

And use URL segments to represent
object structure
For example:

class Employee {
Integer id;
String name;
Employee supervisor;
List<Employee> subordinates;

}

… Use URL to Represent
Resources

URL Represent
/employees All employees
/employees/{id} An employee with {id}
/employees/{id}/name Name of the employee with {id}
/employees/{id}/supervisor Supervisor of the employee

with {id}
/employees/{id}/subordinates Subordinates of the employee with

{id}
/employees/{id1}/subordinates/{id2} The subordinate with {id2} of the

employee with {id1}

Use Request Method to
Represent Action

Mapping of HTTP Request Methods to
CRUD operations

 POST
 GET

 PUT (or PATCH)
 DELETE

 Create
 Retrieve
 Update
 Delete

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

PUT vs PATCH …

Use PUT when the full object is
provided (i.e. "put the provided object
at the URL")

PUT /users/1 HTTP 1.1
{ "id": 1,

"firstName": "Jane",
"lastName": "Doe",
"email": "jdoe@localhost"}

… PUT vs. PATCH

Use PATCH when only part of the object
is provided (i.e. "patch the object at the
URL with what's provided")

PATCH /users/1 HTTP 1.1
{

"firstName":"Jane"
}

Not All Operations Can Be
Represented by Req Methods

For example: search
 Search can be quite complex, e.g. search by

fields, logical operators in search
 No Request Method for search

Well … that's why those are conventions
I'd design a search endpoint with GET
method and query object in request body

Spring Boot

The preferred way to use Spring
Greatly simplified configuration
Build and run Spring web applications
as stand-alone Java applications
Additional production-ready features,
e.g. monitoring and metrics

Create A Spring Boot
Application

https://csns.calstatela.edu/wiki/content/
cysun/course_materials/cs5220/spring-
boot-rest/

https://csns.calstatela.edu/wiki/content/cysun/course_materials/cs5220/spring-boot-rest/

Run A Spring Boot Application

In Eclipse, Run As Java Application

Use the Maven Wrapper (i.e. standalone
Maven)
 On Windows: mvnw.cmd spring-boot:run
 On Linux/MacOS: mvnw spring-boot:run
Package the application in a jar file and
run it with java -jar

Example: List Employees

We can reuse all the model and DAO
code from Spring Web MVC Example
Controller returns objects instead of a
view
 @GetMapping (remember request method

is important)
 @RestController = @Controller +
@ResponseBody

It's Still Spring

Beans, annotations, wiring …
Configuration is greatly simplified
 Single configuration file
 Convention over configuration

Serialization/De-serialization

Java Objects XML/JSON

Java
Object XML/JSON

Serialization/
Marshalling

De-serialization/
Un-marshalling

Problems of Returning Data
Model Objects

Data models are designed for keeping
information, especially for persistent storage
 The information may not be in the best form to be

used by different components of the system
 May contain information not needed by clients,

e.g. supervisor's supervisor
 May contain information not supposed to be

accessed by clients, e.g. password or hash in a
User object

Data Transfer Object (DTO)

An object that carries data from one
part of a system to another
Suitable as objects returned by web API
There are many libraries that
automatically map between data
models and DTOs, e.g. MapStruct

https://mapstruct.org/

Example: Get An Employee

Basic implementation is easy
But what if an employee doesn't exist?
 Return null is not a good solution (in

some cases null may be a valid value,
which is different from Not Found)

 How do we return 404?

Error Handling

Expected errors, e.g. login failure,
missing required fields, … need to
inform client to correct the error
Unexpected errors, i.e. exceptions
need to log problems for analysis and
fix
Error pages and redirects are not
suitable for REST API

Handle Errors in REST API

Use ResponseStatusException for
expected errors
Use @ControllerAdvice to handle
exceptions that you want handle
And let Spring Boot's default exception
handler to handle the rest

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/server/ResponseStatusException.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/ControllerAdvice.html

Spring Exception and
Exception Handling

Problems of Java exceptions
 Too many checked exceptions
 Require lots of boilerplate exception

handling code
Spring uses primarily runtime
exceptions
Separate exception handling code into
exception handlers using AOP

https://docs.oracle.com/javase/8/docs/api/java/lang/RuntimeException.html

Global Exception Handling
Using @ControllerAdvice

@ControllerAdvice
public class SomeControllerAdvice {

@ExceptionHandler(SomeException.class)
public ResponseEntity<T>
handleSomeException(SomeException ex) { … }

@ExceptionHandler(Exception.class)
public ResponseEntity<T>
handleOtherExceptions(Exception ex) { … }

}

T is the type of the object to be serialized into response body.

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/ResponseEntity.html

Example: Add An Employee

Use @RequestMapping on the
controller class
@RequestBody

Use Postman
Set response status with
@ResponseStatus and HttpStatus, e.g.
HttpStatus.CREATED

https://www.getpostman.com/
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/bind/annotation/ResponseStatus.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/http/HttpStatus.html

Example: Update An
Employee …

PUT: replace the whole object
Return void 204 No Content
Potential problems
 Use more bandwidth than necessary
 Require a recent GET

… Example: Update An
Employee

Partial update
 Approach 1: update individual property,

e.g. PUT /employees/1/name
Will need an endpoint for each property

 Approach 2: send only properties to be
updated in a PATCH request, and bind
them to a Map<String,Object>

Example: Delete An Employee
Use DELETE request method
Hard Delete: delete data from database
 Difficult to recover data
 May have unintended consequences, e.g.

cascading delete, orphaned data
Soft Delete: set a deleted flag
 Faster, safer, easier to recover
 Preferrable over hard delete except for certain

conditions (e.g. required by law, limited storage
space)

	CS5220 Advanced Topics in Web Programming�REST API with Spring Boot
	JSON (JavaScript Object Notation)
	HTTP Request Example
	Request Components Commonly Used in REST API
	HTTP Response Example
	Response Components Commonly Used in REST API
	Common Status Code
	REST API Example
	A REST API Endpoint
	Design A REST API Endpoint
	Object Format
	A REST API Endpoint Example
	REST API Design Conventions
	Use URL to Represent Resource …
	… Use URL to Represent Resources
	Use Request Method to Represent Action
	PUT vs PATCH …
	… PUT vs. PATCH
	Not All Operations Can Be Represented by Req Methods
	Spring Boot
	Create A Spring Boot Application
	Run A Spring Boot Application
	Example: List Employees
	It's Still Spring
	Serialization/De-serialization
	Problems of Returning Data Model Objects
	Data Transfer Object (DTO)
	Example: Get An Employee
	Error Handling
	Handle Errors in REST API
	Spring Exception and Exception Handling
	Global Exception Handling Using @ControllerAdvice
	Example: Add An Employee
	Example: Update An Employee …
	… Example: Update An Employee
	Example: Delete An Employee

