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Abstract— Optical Coherence Tomography Angiography 
(OCTA) is a new, non-invasive imaging modality for visualizing 
retinal capillaries for the diagnosis and management of multiple 
eye-related diseases. Glaucoma is one such disease, caused by the 
loss of retinal ganglion cells, which if progressed and not treated in 
time, will eventually lead to blindness. In this study, we present an 
innovative approach based on Convolutional Neural Networks 
(CNNs) to detect glaucoma progression. Our progression detection 
method is composed of five major steps: vessel segmentation, thick 
vessel masking, Otsu thresholding, super-pixel extraction, and 
measurement of macular microvascular density. Microvascular 
density measurements within predefined super pixels are 
compared between baseline and follow-up OCTA scans of 10 
glaucoma patients. Our analysis demonstrates the effectiveness of 
our approach in distinguishing patients with progressive glaucoma 
from those whose glaucoma is stable. Our study offers a 
comprehensive assessment of microvascular vessel density 
dropouts observed in glaucomatous eyes over time, which enables 
early detection of disease progression. With proper management 
and timely treatment for patients with progressive glaucoma, vision 
loss can be slowed or prevented. 

Keywords—Optical Coherence tomography angiography, 
glaucoma progression detection, convolutional neural networks, 
vessel segmentation, microvascular vessel density measurement. 

I. INTRODUCTION 
Retinal degenerative diseases are prevalent among aging 

generations [1]. The vascular system plays an essential role in 
the health and function of the retina. The ocular blood flow 
system provides oxygen and nutrients to the retina, which is 
essential for maintaining vision, and its reduction has also been 
proposed to have a role in glaucoma’s pathogenesis. Glaucoma 
is a multi-factorial disease and one of the most common reasons 
for vision loss in the world. There exists a strong association 
between a reduction in vascular perfusion and the presence of 
glaucoma [2]-[5]. There is a strong hypothesis that vascular 
factors such as decreased vessel density is significantly 

associated with the severity of visual field damage independent 
of structural damage. Visual field loss is conventionally 
considered the reference standard for determining the stage of 
glaucoma. However, visual field testing is subjective, prone to 
noise, and has modest repeatability. Recent studies suggest that 
reduction in vessel density may be a better indicator to track the 
progression of glaucoma [4]-[7]. 

 One major advantage of OCTA imaging is its ability to 
analyze retinal vascular layers in deeper layers, where changes 
of glaucoma-induced vascular occur. Analysis of OCTA could 
better represent vascular structures and potentially enhance 
understanding of retinal impairments [6]. In order to substantiate 
the vascular hypothesis of glaucoma, a limited number of studies 
have been conducted to investigate the association between 
glaucoma progression and decreased blood flow in retinal 
vessels [7]. These investigations report changes in blood vessels 
located in the peripapillary area, optic disc, and macular area in 
glaucoma eyes in comparison with normal eyes [8], [9]. By 
extracting microvascular structures such as Superficial Vascular 
Complexes (SVC) and Deep Vascular Complexes (DVC) [10]-
[11], from different OCTA depth-layers, one can obtain 
corresponding projections to observe respective variations in 
capillary levels [12]. Fig. 1 Shows the inner retinal vascular 
plexus including both SVC and DVC on macular OCTA images 
of two glaucoma patients. The inner retina extended from 3µm 
below the internal limiting membrane to the outer boundary of 
the outer plexiform layer [2], [13]-[14]. 

As vessel density is a critical parameter in advancement 
glaucoma, OCTA offers superior details of vessel visualization 
in order to perform vessel density measurements. Recently, Suh 
et al. [15] reported that decreased deep layer vessel density plays 
a substantial role in glaucoma progression; therefore, with the 
aid of vessel segmentation methods, deep layer vessel density is 



obtained in order to calculate microvascular vessel density [16]-
[19]. 

Over the past two decades, numerous retinal vessel 
segmentation methods have been developed, categorized into 
two groups: supervised and unsupervised methods. Supervised 
retinal vessel segmentation techniques rely on pixel 
classification of vessels and non-vessels through a trained model 
and require an image dataset to train the model in order to obtain 
images of segmented vessels. Unsupervised retinal vessel 
segmentation methods require no prior information to segment 
the vessel. These methods are based on pixel tracking 
information or filtering scheme such as vessel tracking and 
matching filtering [20]-[25]. Recent vessel segmentation 
approaches aim at employing Convolutional Neural Networks 
(CNNs) [24], with the main challenge being the lack of adequate 
datasets for validation. Ma and colleagues apply CNN blocks for 
feature extraction to effectively segment retinal vessels using 
OCTA dataset ROSE into thick and thin vessels. Furthermore, 
they release the ROSE dataset, annotated with retinal 
microvascular network details [2], to the public to support 
OCTA research. 

In our work, we leverage the ROSE dataset, proposing a 
novel method for glaucoma progression detection [25]. Our 
segmentation approach is based on CNNs [26], known for their 
excellence in semantic image segmentation and classification 
[27]-[29]. To improve efficiency and accuracy, we adopt a U-
Net-based [30]-[33] fully convolutional neural network 
architecture proposed in [2] for retinal vessel segmentation into 
thick and thin vessels. We underscore the significance of 
decrease in macular vessel density, which has been reported in 
glaucomatous eyes in conjunction with thinning of the ganglion 
cell complex, and hence, the loss of ganglion cells [6], [14]. A 
novel approach is proposed for detecting glaucoma progression 
and is evaluated on images acquired from 10 patients with 
glaucomatous eyes. We conduct experiments to assess the utility 
of our approach in detecting glaucoma progression. Our 
proposed approach yields outstanding performance in 
distinguishing progressive eyes from stable ones. 

The rest of the paper is organized as follows. Following 
introduction, Section II summarizes a number of related works, 
while Section III introduces preliminary notions concerning the  
proposed glaucoma progression detection method and presents  
our CNN based approach. Experimental results of the proposed 
method are presented in Section IV. Finally, Section V 
concludes this study.  

II. RELATED WORK 
Significant advancements have occurred in glaucoma 

progression detection [34] and glaucoma detection through deep 
learning using fundus images [35]. Chen et al. present a method 
utilizing deep CNNs to perform feature learning and facilitate 
the detection of glaucoma. Their method aims to automatically 
learn relevant features from retinal fundus images in order to 
assist in the glaucoma diagnosis [36].  

Zhang and associates [34] introduce a novel method for 
glaucoma progression detection using trend analysis of the 
thickness of the retinal nerve fiber layer (NFL) and ganglion cell 
complex (GCC) measured by OCT and visual field (VF). The 
investigators define progression as a significant negative trend 
in either NFL or GCC thickness. Based on results, OCT-based 
thickness measures are more sensitive than VF in detecting 
progression in glaucoma. 

In [37], Bowd and colleagues develop a deep learning image 
analysis of OCTA measured vessel density to distinguish 
glaucoma eyes from healthy eyes. They evaluate the 
classification performance of the VGG16 CNN applied to 
OCTA images against Gradient Boost Classifier (GBC) model 
utilizing vessel density measurements. Their findings indicate 
substantial improvement in classification accuracy when using 
CNN model based on vessel density in comparison to GBC 
model.  In [38] Mohammadzadeh et al. discuss a five-year study 
of glaucoma progression detection of macular OCTA with deep 
learning model. Glaucoma progression is determined based on 
specific visual field mean deviation rates. The study uses a 
customized CNN with a multi-layer perceptron classifier for 
classification. The authors’ findings suggest that deep learning 
models demonstrate high performance in detecting glaucoma 
progression based on longitudinal macular OCTA images, 
potentially offering improved detection accuracy comparing to 
a logistic regression model. 

Khalil and associates [39] provide various machine learning 
approaches for both glaucoma detection and prediction, they 
also investigate preprocessing methodologies to enhance the 
quality of OCT images as well as feature extraction methods to 
simplify data for classification. Their study emphasizes the 
pivotal role of feature extraction in achieving the accuracy of 
85% in glaucoma detection.  

In recent years, there has been a notable lack of 
comprehensive research on glaucoma progression detection 
using OCTA images. Existing methods predominantly rely on 
parameters such as visual field, retinal nerve fiber layer 
thickness and ganglion cell measurements utilizing conventional 
OCT images as their primary focus. Recent literature indicates a 
notable gap in the investigation of glaucoma progression 
detection through the analysis of macular thin vessel density. In 
response, our study aims to investigate a new method based on 
thin vessel density measurements derived from OCTA images. 

III. METHODS 

A. Dataset 
We utilize the ROSE dataset that has been introduced in [2]. 

The ROSE dataset consists of total of 117 OCTA images 
including 39 subjects with the mean (SD) age of 68.4 (7.4). All 

Fig. 1. The inner retina vascular plexus including Superficial Vascular  
Complexes and Deep Vascular Complexes. 



scans are captured by the Optovue OCTA device (Optovue, 
Fremont, CA, USA) [33] equipped with AngioVue software, 
with the resolution of 304×304 pixels. This dataset contains both 
SVC and DVC angiograms of each participant. The ROSE 
dataset is employed for training our proposed method, and its 
performance is assessed using various image datasets. The 
testing dataset, consisting of  OCTA images of patients with one 
12-month follow up visit with varying degrees of glaucoma 
progression is provided by the UCLA Stein Eye Institute. 

The mean (SD) age of the patients in the test set is 63.5 (20) 
years. Baseline scans acquired using the Optovue OCTA device, 
featuring an image resolution of 912×912 pixels. These scans 
cover a 6×6 𝑚𝑚! area centered on the fovea and include both 
SVC and DVC angiograms for each participant. The follow-up 
scans are automatically aligned to the baseline scan based on 
retinal vessel trajectories to ensure the measurements are 
derived from same location [34]. 

B. Derivation of vessel density 
In this section, we detail a CNN-based pipeline to detect 

glaucoma progression using OCTA scans based on retinal vessel 
segmentation. The pipeline has five major stages as illustrated 
in Fig. 2. In the first stage, after image preprocessing, we detect 
and segment thick vessels using U-shape CNN networks. In 
stage 2, we proceed to mask thick vessels from the original 
OCTA image to obtain thin vessels of the macula. Subsequently, 
at stage 3, we apply the Otsu-thresholding method to intensify 
thin vessels. Stage 4 involves the extraction of super-pixels from 
both baseline and follow-up OCTA images to be able to 
systematically measure thin vessel density. Finally, in stage 5, 
we measure thin vessel density as our biomarker to detect 
glaucoma progression.  

 
 

 
 

 
 
 
 

 

 

 

 
 

 
 

 
Fig. 2.  Proposed pipeline for detection of glaucoma progression contains 
five major stages. 

 
Throughout this article, we use the terms macular 

microvascular density and macular thin vessel density 
interchangeably. 

The ROSE dataset is utilized during the training model to 
extract thick vessels. The definition of the term ‘thick vessels’ 
has been provided in [2]. According to our ophthalmologist 
collaborators, macular thick vessels likely exhibit minimal 
changes during glaucoma progression, whereas major changes 
would occur primarily in thin vessels. By extracting and 
masking thick vessels, we can effectively quantify the density of 
thin vessels, in order to detect glaucoma progression. Thick 
vessel extraction is originally derived by the method proposed 
by Ma et al. [2] containing a U-shape network architecture 
including five symmetric encoder/decoder blocks. 

 

 

 

 

 

Fig. 3. Detecting thick vessels on input images. 
 

A sample output of thick vessel detection stage is presented 
in Fig. 3. Extracted thick vessel images are masked from original 
OCTA images, resulting in OCTA images with only thin 
macular vessels (Fig. 4). 

 
 

 
 
 
Fig. 4.  Masking thick vessels from Original OCTA image. 

 
Next, we measure blood vessel density from masked OCTA 

output images. Based on the recommendation of our 
ophthalmologist collaborators, the blood vessel density will 
likely change as glaucoma progresses. Thin vessel density of 
baseline and follow-up is calculated and compared to capture 
progression of glaucoma in a specific eye. We employ the 
Simple Linear Iterative Clustering (SLIC) [40] method to 
segment OCTA images obtained from previous stage into 100 
super-pixels with equal size. A super-pixel is defined as a group 
of pixels that share common characteristics. The utilization of 
super-pixels is motivated by their ability to reduce sensitivity to 
noise and simplify the complexity of vessel density 
measurement. To calculate super-pixels vessel density, we 
convert 3-channel RGB images to grayscale images. This 
strategy needs binarization thresholding [41] which involves an 
algorithm to clearly generate an OCTA image to assign each 
pixel value to either white or black in order to obtain binary 
image [41]-[42]. In our method, Otsu-thresholding is applied to 
calculate the optimal threshold, to separate the vessels from the 
background in an OCTA image. Otsu-thresholding is based on 
pixel density; if the value of specific pixel of input image is 
greater than the threshold the corresponding pixel is marked as 
white, and if the input pixel intensity is less than or equal the 
threshold, that specific pixel on output image is marked black.  
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The Otsu-thresholding method has three steps as follow: 

• Compute image histogram, 
• Obtain the threshold value as T,  
• Replace pixels into white pixel where saturation is higher 

than T and into black in opposite case. 

After obtaining the histogram, the image is partitioned into two 
clusters with the threshold defined by minimizing the weighted 
variance of the classes depicted by 𝜎"!(𝑡). The whole equation 
can be described as follows: 

𝜎"!(𝑡) = 𝜔#(𝑡)𝜎#!(𝑡) + 𝜔!(𝑡)𝜎!!(𝑡), (1) 

where 𝜔#(𝑡), 𝜔!(𝑡) represents the probabilities of two classes 
divided by a threshold T, which takes values within the range of 
0 to 255 inclusively. As illustrated in [43], there are two options 
to obtain the threshold, the first one is to minimize within-class 
variance denoted above as 𝜎"!(𝑡), the second is to maximize 
between-class variance using expression as follow: 

𝜎$!(𝑡) = 𝜔#(𝑡)𝜔!(𝑡)[𝜇#(𝑡) − 𝜇!(𝑡)],!    (2) 

where 𝜇% is the mean value of each class of 𝑖.  
It should be noted that the image can be represented as 

intensity function 𝑓(𝑥, 𝑦), where values are in grayscale level. 
If i represent the quantity of pixels with a specific grayscale 
level, and n denotes the total number of pixels in the image. 
Thus, the probability of grayscale level i is calculated as: 𝑃(𝑖) =
&!
&

. The probability P is calculated for each pixel ranging from 0 
to 255, in two separated clusters 𝐶# and 𝐶! using probability 
functions as 𝑃(𝑖). 

𝜔#(𝑡) =4 𝑃(𝑖)
'

%(#
 (3) 

𝜔!(𝑡) =4 𝑃(𝑖)
)

%('*#
 (4) 

 
The pixel intensity values for the 𝐶# are in [1, 𝑡] and for 	𝐶! 

are in [𝑡 + 1, 𝐼], where 𝐼 is the maximum pixel value 255. 
Afterwards, the mean value for 𝐶#, 𝐶! is obtained as 𝜇#(𝑡) and  
𝜇!(𝑡), respectively;  

𝜇#(𝑡) =4
𝑖𝑃(𝑖)
𝜔#(𝑡)

'

%(#
 (5) 

𝜇!(𝑡) =4
𝑖𝑃(𝑖)
𝜔!(𝑡)

)

%('*#
 (6) 

where,  𝜇% is the mean value belonging to each class. 

The final threshold is calculated for every pair of test-set 
OCTA images and applied to assign pixels to a proper value 
based on the Otsu algorithm to optimize image contrast [43]. 
This method preserves true blood flow, simplifying the 
quantitative measurements of vessel density for every super-
pixel in the next stage. In this stage, SLIC algorithm [40] will be 
applied to the output OCTA images from the previous stage. The 
SLIC algorithm obtains super-pixels with regular size as 
depicted in Fig. 5. Every super-pixel has been generated with 
inner connectivity and it is guaranteed that each pixel is included 
in one specific super-pixel. The main purpose of segmenting 
OCTA images into super-pixels is vessel density measurement 

on baseline OCTA image in comparison with follow-up OCTA 
image from same eye. The difference between super-pixels 
density is used to detect glaucoma progression in a specific eye.  

 

 

 

 
 

Fig. 5. Appling SLIC, to segment OCTA image into 100 super-pixel. 
 

IV.  EXPERIMENTS 
 We evaluate the performance of our innovative glaucoma 
progression detection method through extensive experiments. 
We apply a test-set, including baseline and follow-up scans 
from 10 glaucoma patients with varying severity of glaucoma. 
Applying our method to these OCTA images enable us to 
perform a comparison of vessel density values for corresponding 
super-pixels in baseline and follow-up scans. The results are 
promising, demonstrating the method’s precision in detecting 
progressive glaucoma. Patients with deteriorating conditions 
exhibit substantial changes in vessel density, while stable 
conditions show minimal changes. This suggests the potential 
value of our approach for monitoring glaucoma progression over 
time and assessing treatment effectiveness. 

Scatter plots and line charts are utilized in order to analyze 
vessel density measurements in a detailed manner across 100 
super-pixels in both baseline and follow-up scans. 

A. Evaluation Metrics 
In order to obtain a thorough and comprehensive evaluation 

of the first stage of the proposed method, the accuracy metric is 
utilized to represent the performance of thick vessel 
segmentation. The first stage of the method achieves an 
accuracy of 97.4% in segmenting thick vessels, as shown in Fig. 
6. The yellow image represents the ground truth, annotated by 
ophthalmologists to grade thick vessel segmentation in OCTA 
images at the pixel level. The pink image corresponds to the 
output of predicted thick vessel segmentation with our method, 
while the white image depicts the merged of annotated thick 
vessels and predicted thick vessels. 

 

 

Applying SLIC 

Fig. 6.  Ground truth (yellow); predicted (pink); merged image (white). 



For the purpose of analyzing glaucoma progression from 
OCTA images, we utilize the t-value patterns as the basis for 
identifying a significant change in vessel density between the 
baseline and follow-up OCTA images. In other words, the t-
value is calculated using the following equation:   

 

𝑋9# + 𝑋!

:𝑆#
!

𝑛#
+ 𝑆!

!

𝑛!

 
 

(7) 

 

B. Experimental Results 
In this section, we implement the proposed method on a test-

set comprising images from patients at varying glaucoma 
degrees including both baseline and follow-up scans. Each 
image is resized into a grayscale image with 304×304 pixels. 
Fig. 7 demonstrate samples with progressive and stable (non-
progressive) glaucoma. In the left panel of figure, the vessel 
density values for two patients whose glaucoma is stable is 
visualized by line charts and scatterplots with the reference of 
y=x. points on this line represent super-pixels whose vessel 
density did not change over time, which is indicative of 
glaucoma’s stability. The right panel of the figure contains 
similar visualizations for two sample patients whose glaucoma 
is progressive and as a result, the follow-up line charts in yellow 
color are noticeably below their blue counterparts. Moreover, 
the skewness of points below the y=x line in the scatterplots 
signals a decline in vessel density over time, pointing out the 
progression of glaucoma in these two patients. The vessel 
density analysis of the super-pixels in group A including patient 
1 and 2, suggests that their condition is stable, and glaucoma is 
considered non-progressive. To further elaborate our findings, 
such a small t-value of 0.73 for patient 1 and 0.37 for patient 2, 
confirm that there has been only minor change in the vessel 
density, providing additional proof of consistency in our results.  

 Upon comparison of the baseline and follow-up data for 
group B consisting of patient 6 and 7, there is evidence of 
progression of glaucoma. t-values of 2.52 and 2.75 for patient 6 
and patient 7 represent a significant change between the follow-
up and baseline images. This suggests that the disease has 
progressed over time in these patients. 

In general, the greater the t-values the higher the probability 
that changes in vessel density between baseline and follow-up is 
not due to random fluctuations in vessel density.  

For this testing dataset of baseline and follow-up images, our 
method achieves perfect progression detection performance. 
This outcome strongly supports the hypothesis that a decline in 
thin vessel density in deep vascular complexes of the  macula 
using OCTA images is a robust indicator of glaucoma 
progression. In our subsequent analysis, we categorize the test-
set patients into two distinct groups based on t-values: the 
progressive glaucoma group for cases with t-values greater than 
1, and stable (non-progressive) group for cases with t-values less 
than 1 as depicted in Fig. 8. 

 
 
 
 
 
 
 
 
 
 

 
 
 

t-value = 

Group A Group B 

 

t-value= 2.52 

t-value= 2.75 

t-value= 0.73 

t-value= 0.37 

Fig. 7. Group A contains stable glaucoma patients with t-value lower than 1 on patient 1 and patient 2. Scatter plot and line chart represent minimal change on 
thin vessel density comparing baseline and follow-up, whereas group B represent significant change on thin vessel density which means progressive glaucoma 
in patient 6 and patient 7, comparing baseline and follow-up. 

Fig. 8. Bar-chart illustration of glaucoma status categorized as progressive 
and stable. 
 



V. CONCLUSIONS 
Rate of disease progression is one of the most important 

factors determining the risk of visual disability or blindness in 
glaucoma, and the evaluation of rate of progression in routine 
care is often recommended for glaucoma management. In this 
paper, we introduce a novel five-stage method for detecting 
glaucoma progression. Our approach includes a U-Net-based 
architecture utilizing ResNet blocks as the backbone for thick 
vessel segmentation. After removing the thick vessels from the 
OCTA images, we apply Otsu-thresholding to enhance the 
visibility of thin capillaries, allowing for precise vessel density 
measurement in glaucoma progression detection. Our 
comprehensive experiments on the test-set demonstrate the 
outstanding performance of our approach in capturing glaucoma 
progression. We further support our findings by conducting a t-
value analysis on thin vessel variations within the test-set in 
order to confirm our hypothesis. This study underscore the 
potential of retinal microvascular-based analysis in detecting 
glaucoma progression, where small capillaries play a pivotal 
role in glaucoma progression detection. The outcomes of our 
study highlight that the proposed approach excels in efficiently 
assessing the glaucoma progression status during its initial 
stages. This framework holds the potential to enhance detection 
of glaucoma progression. Accordingly, more rigorous 
treatments can be considered for those whose glaucoma is 
progressing and are at a higher risk of blindness form glaucoma. 
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