
Sun Microsystems, Inc.
www.sun.com

See https://jsp-spec-public.dev.java.net to comment on and discuss this specification

Expression Language Specification
Version 2.2 Maintenance Release

A component of the JavaServer™ Pages Specification
Version 2.2

Kin-Man Chung, Pierre Delisle, Mark Roth, editors

Maintenance Release 2 - December 10, 2009

Sun Microsystems, Inc.
www.sun.com

See https://jsp-spec-public.dev.java.net to comment on and discuss this specification

iii
Specification: JSR-000245 JavaServer(tm) Pages ("Specification")

Version: 2.2

Status: Maintenance Release 2

Release: 10 December 2009

Copyright 2009 SUN MICROSYSTEMS, INC.

4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under Sun’s applicable intellectual property rights to view, download,
use and reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing applications
intended to run on an implementation of the Specification, provided that such applications do not themselves implement
any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting brief
portions of the Specification in oral or written communications which discuss the Specification provided that such
excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclusive, non-
transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable
copyrights or, subject to the provisions of subsection 4 below, patent rights it may have covering the Specification to create
and/or distribute an Independent Implementation of the Specification that: (a) fully implements the Specification
including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the
Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and
(c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable TCK Users Guide)
for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your
not acting outside its scope. No license is granted hereunder for any other purpose (including, for example, modifying
the Specification, other than to the extent of your fair use rights, or distributing the Specification to third parties). Also,
no right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted
hereunder. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular
"pass through" requirements in any license You grant concerning the use of your Independent Implementation or products
derived from it. However, except with respect to Independent Implementations (and products derived from them) that
satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass through to your
licensees any licenses under Sun’s applicable intellectual property rights; nor (b) authorize your licensees to make any
claims concerning their implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed
by all technically feasible implementations of the Specification, such license is conditioned upon your offering on fair,
reasonable and non-discriminatory terms, to any party seeking it from You, a perpetual, non-exclusive, non-transferable,
worldwide license under Your patent rights which are or would be infringed by all technically feasible implementations
of the Specification to develop, distribute and use a Compliant Implementation.
JavaServer Page 2.2 Specification

iv
b With respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2, whether or
not their infringement can be avoided in a technically feasible manner when implementing the Specification, such license
shall terminate with respect to such claims if You initiate a claim against Sun that it has, in the course of performing its
responsibilities as the Specification Lead, induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license granted under subparagraph 2 above,
where the infringement of such claims can be avoided in a technically feasible manner when implementing the
Specification such license, with respect to such claims, shall terminate if You initiate a claim against Sun that its making,
having made, using, offering to sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the
Specification that neither derives from any of Sun’s source code or binary code materials nor, except with an appropriate
and separate license from Sun, includes any of Sun’s source code or binary code materials; "Licensor Name Space" shall
mean the public class or interface declarations whose names begin with "java", "javax", "com.sun" or their equivalents
in any subsequent naming convention adopted by Sun through the Java Community Process, or any recognized successors
or replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK
User’s Guide provided by Sun which corresponds to the Specification and that was available either (i) from Sun 120 days
before the first release of Your Independent Implementation that allows its use for commercial purposes, or (ii) more
recently than 120 days from such release but against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement or act outside the scope
of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT (INCLUDING AS A
CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the Specification in any product. In addition, the Specification could
include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR
HAVING, IMPLEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS
LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your
use of the Specification; (ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any
claims that later versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND
JavaServer Page 2.2 Specification

v

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government
prime contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-
4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree
that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-
exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels of
sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other
countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous
oral or written communications, proposals, conditions, representations and warranties and prevails over any conflicting
or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its
subject matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.
JavaServer Page 2.2 Specification

vi
JavaServer Page 2.2 Specification

Contents

Preface xi

Historical Note xi

Related Documentation xii

Typographical Conventions xiii

Acknowledgments xiii

Comments xiii

1. Language Syntax and Semantics 1

1.1 Overview 1

1.1.1 EL in a nutshell 2

1.2 EL Expressions 2

1.2.1 Eval-expression 2

1.2.1.1 Eval-expressions as value expressions 3

1.2.1.2 Eval-expressions as method expressions 4

1.2.2 Literal-expression 5

1.2.3 Composite expressions 6

1.2.4 Syntax restrictions 7

1.3 Literals 7

1.4 Errors, Warnings, Default Values 7

1.5 Resolution of Model Objects and their Properties or Methods 8
vii

1.6 Operators [] and . 8

1.7 Arithmetic Operators 10

1.7.1 Binary operators - A {+,-,*} B 10

1.7.2 Binary operator - A {/,div} B 11

1.7.3 Binary operator - A {%,mod} B 11

1.7.4 Unary minus operator - -A 11

1.8 Relational Operators 12

1.8.1 A {<,>,<=,>=,lt,gt,le,ge} B 12

1.8.2 A {==,!=,eq,ne} B 13

1.9 Logical Operators 13

1.9.1 Binary operator - A {&&,||,and,or} B 14

1.9.2 Unary not operator - {!,not} A 14

1.10 Empty Operator - empty A 14

1.11 Conditional Operator - A ? B : C 14

1.12 Parentheses 15

1.13 Operator Precedence 15

1.14 Reserved Words 15

1.15 Functions 16

1.16 Variables 16

1.17 Enums 17

1.18 Type Conversion 17

1.18.1 To Coerce a Value X to Type Y 17

1.18.2 Coerce A to String 18

1.18.3 Coerce A to Number type N 18

1.18.4 Coerce A to Character 19

1.18.5 Coerce A to Boolean 19

1.18.6 Coerce A to an Enum Type T 19

1.18.7 Coerce A to Any Other Type T 19

1.19 Collected Syntax 20
viii Expression Language Specification • Maintenance Release 2 - December 10, 2009

2. Java APIs 23

javax.el 25

ArrayELResolver 29

BeanELResolver 34

BeanELResolver.BeanProperties 41

BeanELResolver.BeanProperty 42

CompositeELResolver 44

ELContext 52

ELContextEvent 56

ELContextListener 58

ELException 59

ELResolver 61

Expression 68

ExpressionFactory 71

FunctionMapper 75

ListELResolver 77

MapELResolver 82

MethodExpression 87

MethodInfo 90

MethodNotFoundException 92

PropertyNotFoundException 94

PropertyNotWritableException 96

ResourceBundleELResolver 98

ValueExpression 102

ValueReference 106

VariableMapper 108

A. Changes 111

A.1 Changes between Maintenance 1 and Maintenance Release 2 111

A.2 Changes between 1.0 Final Release and Maintenance Release 1 112
Contents ix

A.3 Changes between Final Release and Proposed Final Draft 2 112

A.4 Changes between Public Review and Proposed Final Draft 113

A.5 Changes between Early Draft Release and Public Review 114
x Expression Language Specification • Maintenance Release 2 - December 10, 2009

Preface

This is the Expression Language specification version 2.1, developed jointly by the
JSR-245 (JSP 2.1) and JSR-252 (Faces 1.2) expert groups under the Java Community
Process. See http://www.jcp.org.

Historical Note
The EL was orginally inspired by both ECMAScript and the XPath expression
languages. During its inception, the experts involved were very reluctant to design
yet another expression language and tried to use each of these languages, but they
fell short in different areas.

The JSP Standard Tag Library (JSTL) version 1.0 (based on JSP 1.2) was therefore first
to introduce an Expression Language (EL) to make it easy for page authors to access
and manipulate application data without having to master the complexity associated
with programming languages such as Java and JavaScript.

Given its success, the EL was subsequently moved into the JSP specification (JSP
2.0/JSTL 1.1), making it generally available within JSP pages (not just for attributes
of JSTL tag libraries).

JavaServer Faces 1.0 defined a standard framework for building User Interface
components, and was built on top of JSP 1.2 technology. Because JSP 1.2 technology
did not have an integrated expression language and because the JSP 2.0 EL did not
meet all of the needs of Faces, an EL variant was developed for Faces 1.0. The Faces
expert group (EG) attempted to make the language as compatible with JSP 2.0 as
possible but some differences were necessary.
xi

It is obviously desirable to have a single, unified expression language that meets the
needs of the various web-tier technologies. The Faces and JSP EGs therefore worked
together on the specification of a unified expression language, defined in this
document, and which takes effect for the JSP 2.1 and Faces 1.2 releases.

The JSP/JSTL/Faces expert groups also acknowledge that the Expression
Language(EL) is useful beyond their own specifications. It is therefore desirable to
eventually move the Expression Language into its own JSR to give it more visibility
and guarantee its general applicability outside of the JSP specification.

It has not been possible to give the EL its own JSR at this time. However, as a first
step, JSP 2.1 delivers 2 specification documents, one specific to the JSP technology,
and one specific to the Expression Language (this document). This makes the intent
clear that the Expression Language does not carry a dependency on the JSP
specification and will make it easier in the future should the decision be made to
move it into its own JSR.

Related Documentation
Implementors of the Expression Language and web developers may find the
following documents worth consulting for additional information:.

JavaServer Pages (JSP) http://java.sun.com/products/jsp

JSP Standard Tag Library (JSTL) http://java.sun.com/products/jsp/jstl

JavaServer Faces (JSF) http://java.sun.com/j2ee/javaserverfaces

Java Servlet Technology http://java.sun.com/servlet

Java 2 Platform, Standard Edition http://java.sun.com/j2se

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

JavaBeans http://java.sun.com/beans
xii Expression Language Specification • Maintenence Release - December 10, 2009

Typographical Conventions

Acknowledgments
This specification on the unified Expression Language is the joint work of the JSR-
245 (JavaServer Pages) and JSR-252 (JavaServer Faces) expert groups. We want to
thank members of these two expert groups for their spirit of collaboration and
excellent work on the unification of the Expression Language.

Special mention is due to Jacob Hookom and Adam Winer for their leadership role
in helping solve the complex technical issues we were faced with in this unification
work.

The editors also want to give special thanks to the individuals within the Java
Enterprise Edition platform team at Sun Microsystems, and especially to Bill
Shannon, Eduardo Pellegri-Llopart, Jim Driscoll, Karen Schaffer, Jan Luehe, Nick
Rodin, Sheri Shen, Jean-Francois Arcand, Jennifer Ball, Tony Ng, Ed Burns, Jayashri
Visvanathan, Roger Kitain, Ryan Lubke, Dhiru Pandey, Greg Murray, and Norbert
Lindenberg.

Comments
We are interested in improving this specification and welcome your comments and
suggestions. We have a java.net project with an issue tracker and a mailing list for
comments and discussions about this specification:

https://jsp-spec-public.dev.java.net/

Font Style Uses

Italic Emphasis, definition of term.

Monospace
Syntax, code examples, attribute names, Java language types,
API, enumerated attribute values.
Preface xiii

xiv Expression Language Specification • Maintenence Release - December 10, 2009

CHAPTER 1

Language Syntax and Semantics

The syntax and semantics of the Expression Language (EL) are described in this
chapter.

1.1 Overview
The EL is a simple language designed to meet the needs of the presentation layer in
web applications. It features:

■ A simple syntax restricted to the evaluation of expressions

■ Variables and nested properties

■ Relational, logical, arithmetic, conditional, and empty operators

■ Functions implemented as static methods on Java classes

■ Lenient semantics where appropriate default values and type conversions are
provided to minimize exposing errors to end users

as well as

■ A pluggable API for resolving variable references into Java objects and for
resolving the properties applied to these Java objects

■ An API for deferred evaluation of expressions that refer to either values or
methods on an object

■ Support for lvalue expressions (expressions a value can be assigned to)

These last three features are key additions to the JSP 2.0 EL resulting from the EL
alignment work done in the JSP 2.1 and Faces 1.2 specifications.
1

1.1.1 EL in a nutshell
The syntax is quite simple. Model objects are accessed by name. A generalized []
operator can be used to access maps, lists, arrays of objects and properties of a
JavaBeans object, and to invoke methods in a JavaBeans object; the operator can be
nested arbitrarily. The . operator can be used as a convenient shorthand for
property access when the property name follows the conventions of Java identifiers,
but the [] operator allows for more generalized access. Simlarly, . operator can also
be used to invoke methods, when the method name is known, but the [] operator
can be used to invoke methods dynamically.

Relational comparisons are allowed using the standard Java relational operators.
Comparisons may be made against other values, or against boolean (for equality
comparisons only), string, integer, or floating point literals. Arithmetic operators can
be used to compute integer and floating point values. Logical operators are
available.

The EL features a flexible architecture where the resolution of model objects (and
their associated properties), functions, and variables are all performed through a
pluggable API, making the EL easily adaptable to various environments.

1.2 EL Expressions
An EL expression is specified either as an eval-expression, or as a literal-expression. The
EL also supports composite expressions, where multiple EL expressions (eval-
expressions and literal-expressions) are grouped together.

An EL expression is parsed as either a value expression or a method expression. A value
expression refers to a value, whereas a method expression refers to a method on an
object. Once parsed, the expression can optionally be evaluated one or more times.

Each type of expression (eval-expression, literal-expression, and composite
expression) is described in its own section below.

1.2.1 Eval-expression
An eval-expression is formed by using the constructs ${expr} or #{expr}. Both
constructs are parsed and evaluated in exactly the same way by the EL, even though
they might carry different meanings in the technology that is using the EL.
2 Expression Language Specification • Maintenence Release 2 - December 10, 2009

For instance, by convention the J2EE web tier specifications use the ${expr}
construct for immediate evaluation and the #{expr} construct for deferred
evaluation. This difference in delimiters points out the semantic differences between
the two expression types in the J2EE web tier. Expressions delimited by "#{}" are said
to use "deferred evaluation" because the expression is not evaluated until its value is
needed by the system. Expressions delimited by "${}" are said to use "immediate
evaluation" because the expression is compiled when the JSP page is compiled and it
is executed when the JSP page is executed. More on this in Section 1.2.4, “Syntax
restrictions”.

Other technologies may choose to use the same convention. It is up to each
technology to enforce its own restrictions on where each construct can be used.

Nested eval-expressions, such as ${item[${i}]}, are illegal.

1.2.1.1 Eval-expressions as value expressions

When parsed as a value expression, an eval-expression can be evaluated as either an
rvalue or an lvalue. If there were an assignment operator in the EL, an rvalue is an
expression that would typically appear on the right side of the assignment operator.
An lvalue would typically appear on the left side.

For instance, all EL expressions in JSP 2.0 are evaluated by the JSP engine
immediately when the page response is rendered. They all yield rvalues.

In the following JSTL action

 <c:out value="${customer.name}"/>

the expression ${customer.name} is evaluated by the JSP engine and the returned
value is fed to the tag handler and converted to the type associated with the
attribute (String in this case).

Faces, on the other hand, supports a full UI component model that requires
expressions to represent more than just rvalues. It needs expressions to represent
references to data structures whose value could be assigned, as well as to represent
methods that could be invoked.

For example, in the following Faces code sample:

<h:form>
 <h:inputText
 id="email"
 value="#{checkOutFormBean.email}"
 size="25" maxlength="125"
 validator="#{checkOutFormBean.validateEmail}"/>
</h:form>
Chapter 1 Language Syntax and Semantics 3

when the form is submitted, the "apply request values" phase of Faces evaluates the
EL expression #{checkOutFormBean.email} as a reference to a data structure
whose value is set with the input parameter it is associated with in the form. The
result of the expression therefore represents a reference to a data structure, or an
lvalue, the left hand side of an assignment operation.

When that same expression is evaluated during the rendering phase, it yields the
specific value associated with the object (rvalue), just as would be the case with JSP.

The valid syntax for an lvalue is a subset of the valid syntax for an rvalue. In
particular, an lvalue can only consist of either a single variable (e.g. ${name}) or a
property resolution on some object, via the . or [] operator (e.g.
${employee.name}).

When parsing a value expression, an expected type is provided. In the case of an
rvalue, the expected type is what the result of the expression evaluation is coerced
to. In the case of lvalues, the expected type is ignored and the provided value is
coerced to the actual type of the property the expression points to, before that
property is set. The EL type conversion rules are defined in Section 1.18, “Type
Conversion”. A few sample eval-expressions are shown in FIGURE 1-1.

FIGURE 1-1 Sample eval-expressions

1.2.1.2 Eval-expressions as method expressions

In some cases, it is desirable for an EL expression to refer to a method instead of a
model object.

For instance, in JSF, a component tag also has a set of attributes for referencing
methods that can perform certain functions for the component associated with the
tag. To support these types of expressions, the EL defines method expressions (EL
class MethodExpression).

Expression Expected Type Result

${customer.name} String
Guy Lafleur
Expression evaluates to a String. No
conversion necessary.

${book} String

Wonders of the World
Expression evaluates to a Book object
(e.g. com.example.Book). Conversion
rules result in the evaluation of
book.toString(), which could for
example yield the book title.
4 Expression Language Specification • Maintenence Release 2 - December 10, 2009

In the above example, the validator attribute uses an expression that is associated
with type MethodExpression. Just as with ValueExpressions, the evaluation of
the expression (calling the method) is deferred and can be processed by the
underlying technology at the appropriate moment within its life cycle.

A method expression shares the same syntax as an lvalue. That is, it can only consist
of either a single variable (e.g. ${name}) or a property resolution on some object, via
the . or [] operator (e.g. ${employee.name}). Information about the expected
return type and parameter types is provided at the time the method is parsed.

A method expression is evaluated by invoking its referenced method or by
retrieving information about the referenced method. Upon evaluation, if the
expected signature is provided at parse time, the EL API verifies that the method
conforms to the expected signature, and there is therefore no coercion performed. If
the expected signature is not provided at parse time, then at evaluation, the method
is identified with the information of the parameters in the expression, and the
parameters are coerced to the respective formal types.

1.2.2 Literal-expression
A literal-expression does not use the ${expr} or #{expr} constructs, and simply
evaluates to the text of the expression, of type String. Upon evaluation, an
expected type of something other than String can be provided. Sample literal-
expressions are shown in FIGURE 1-2.

FIGURE 1-2 Sample literal-expressions

To generate literal values that include the character sequence "${" or “#{“, the
developer can choose to use a composite expression as shown here:

${'${'}exprA}

#{'#{'}exprB}The resulting values would then be the strings ${exprA} and
#{exprB}.

Alternatively, the escape characters \$ and \# can be used to escape what would
otherwise be treated as an eval-expression. Given the literal-expressions:

\${exprA}

\#{exprB}

Expression
Expected

Type
Result

Aloha! String Aloha!

true Boolean Boolean.TRUE
Chapter 1 Language Syntax and Semantics 5

The resulting values would again be the strings ${exprA} and #{exprB}.

A literal-expression can be used anywhere a value expression can be used. A literal-
expression can also be used as a method expression that returns a non-void return
value. The standard EL coercion rules (see Section 1.18, “Type Conversion”) then
apply if the return type of the method expression is not java.lang.String.

1.2.3 Composite expressions
The EL also supports composite expressions, where multiple EL expressions are
grouped together. With composite expressions, eval-expressions are evaluated from
left to right, coerced to Strings (according to the EL type conversion rules), and
concatenated with any intervening literal-expressions.

For example, the composite expression “${firstName} ${lastName}” is
composed of three EL expressions: eval-expression “${firstName}”, literal-
expression “ “, and eval-expression “${lastName}”.

Once evaluated, the resulting String is then coerced to the expected type,
according to the EL type conversion rules. A sample composite expression is shown
in FIGURE 1-3.

FIGURE 1-3 Sample composite expression

It is illegal to mix ${} and #{} constructs in a composite expression. This
restriction is imposed to avoid ambiguities should a user think that using ${expr}
or #{expr} dictates how an expression is evaluated. For instance, as was mentioned
previously, the convention in the J2EE web tier specifications is for ${} to mean
immediate evaluation and for #{} to mean deferred evaluation. This means that in
EL expressions in the J2EE web tier, a developer cannot force immediate evaluation
of some parts of a composite expression and deferred evaluation of other parts. This
restriction may be lifted in future versions to allow for more advanced EL usage
patterns.

Expression
Expected

Type
Result

Welcome
${customer.name} to
our site

String

Welcome Guy Lafleur to our
site
${customer.name} evaluates to a
String which is then concatenated with the
literal-expressions. No conversion
necessary.
6 Expression Language Specification • Maintenence Release 2 - December 10, 2009

A composite expression can be used anywhere an EL expression can be used except
for when parsing a method expression. Only a single eval-expression can be used to
parse a method expression.

1.2.4 Syntax restrictions
While ${} and #{} eval-expressions are parsed and evaluated in exactly the same
way by the EL, the underlying technology is free to impose restrictions on which
syntax can be used according to where the expression appears.

For instance, in JSP 2.1, #{} expressions are only allowed for tag attributes that
accept deferred expressions. #{expr} will generate an error if used anywhere else.

1.3 Literals
There are literals for boolean, integer, floating point, string, and null in an eval-
expression.

■ Boolean - true and false
■ Integer - As defined by the IntegerLiteral construct in Section 1.19
■ Floating point - As defined by the FloatingPointLiteral construct in

Section 1.19
■ String - With single and double quotes - " is escaped as \", ' is escaped as \',

and \ is escaped as \\. Quotes only need to be escaped in a string value enclosed
in the same type of quote

■ Null - null

1.4 Errors, Warnings, Default Values
The Expression Language has been designed with the presentation layer of web
applications in mind. In that usage, experience suggests that it is most important to
be able to provide as good a presentation as possible, even when there are simple
errors in the page. To meet this requirement, the EL does not provide warnings, just
default values and errors. Default values are type-correct values that are assigned to
a subexpression when there is some problem. An error is an exception thrown (to be
handled by the environment where the EL is used).
Chapter 1 Language Syntax and Semantics 7

1.5 Resolution of Model Objects and their
Properties or Methods
A core concept in the EL is the evaluation of a model object name into an object, and
the resolution of properties or methods applied to objects in an expression
(operators . and []).

The EL API provides a generalized mechanism, an ELResolver, implemented by
the underlying technology and which defines the rules that govern the resolution of
model object names and their associated properties.

1.6 Operators [] and .
The EL follows ECMAScript in unifying the treatment of the . and [] operators.

expr-a.identifier-b is equivalent to expr-a["identifier-b"]; that is, the
identifier identifier-b is used to construct a literal whose value is the identifier,
and then the [] operator is used with that value.

Similarly, expr-a.identifier-b(params)is equivalent to expr-
a["identifier-b"](params).

The expression expr-a["identifier-b"](params)denotes a parametered
method invocation, where params is a comma-separated list of expressions
denoting the parameters for the method call.

To evaluate expr-a[expr-b] or expr-a[expr-b](params):

■ Evaluate expr-a into value-a.

■ If value-a is null:

■ If expr-a[expr-b] is the last property being resolved:

■ If the expression is a value expression and
ValueExpression.getValue(context) was called to initiate this
expression evaluation, return null.

■ Otherwise, throw PropertyNotFoundException.
[trying to de-reference null for an lvalue]

■ Otherwise, return null.

■ Evaluate expr-b into value-b .

■ If value-b is null:
8 Expression Language Specification • Maintenence Release 2 - December 10, 2009

■ If expr-a[expr-b] is the last property being resolved:

■ If the expression is a value expression and
ValueExpression.getValue(context) was called to initiate this
expression evaluation, return null.

■ Otherwise, throw PropertyNotFoundException.
[trying to de-reference null for an lvalue]

■ Otherwise, return null.

■ If the expression is a value expression:

■ If expr-a[expr-b] is the last property being resolved:

■ If ValueExpression.getValue(context) was called to initiate this
expression evaluation.

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-
a, value-b, null, param-values).

■ Otherwise, invoke elResolver.getValue(value-a, value-
b).

■ If ValueExpression.getType(context) was called, invoke
elResolver.getType(context, value-a, value-b).

■ If ValueExpression.isReadOnly(context) was called, invoke
elResolver.isReadOnly(context, value-a, value-b).

■ If ValueExpression.setValue(context, val) was called, invoke
elResolver.setValue(context, value-a, value-b, val).

■ Otherwise:

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-a,
value-b, null, params).

■ Otherwise, invoke elResolver.getValue(value-a, value-b).

■ Otherwise, the expression is a method expression:

■ If expr-a[expr-b] is the last property being resolved:

■ Coerce value-b to String.

■ If the expression is not a parametered method call, fnd the method on object
value-a with name value-b and with the set of expected parameter types
provided at parse time. If the method does not exist, or the return type does
not match the expected return type provided at parse time, throw
MethodNotFoundException.

■ If MethodExpression.invoke(context, params) was called:
Chapter 1 Language Syntax and Semantics 9

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-
a, value-b, paramTypes, param-values), where paramTypes
is the parameter types, if provided at parse time, and
is null otherwise.

■ Otherwise, invoke the found method with the parameters passed to the
invoke method.

■ If MethodExpression.getMethodInfo(context) was called, construct
and return a new MethodInfo object.

■ Otherwise:

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-a,
value-b, null, params).

■ Otherwise, invoke elResolver.getValue(value-a, value-b).

1.7 Arithmetic Operators
Arithmetic is provided to act on integer (BigInteger and Long) and floating point
(BigDecimal and Double) values. There are 5 operators:

■ Addition: +

■ Substraction: -

■ Multiplication: *

■ Division: / and div

■ Remainder (modulo): % and mod

The last two operators are available in both syntaxes to be consistent with XPath and
ECMAScript.

The evaluation of arithmetic operators is described in the following sections. A and B
are the evaluation of subexpressions

1.7.1 Binary operators - A {+,-,*} B
■ If A and B are null, return (Long)0

■ If A or B is a BigDecimal, coerce both to BigDecimal and then:

■ If operator is +, return A.add(B)
10 Expression Language Specification • Maintenence Release 2 - December 10, 2009

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

■ If A or B is a Float, Double, or String containing ., e, or E:

■ If A or B is BigInteger, coerce both A and B to BigDecimal and apply
operator.

■ Otherwise, coerce both A and B to Double and apply operator

■ If A or B is BigInteger, coerce both to BigInteger and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

■ Otherwise coerce both A and B to Long and apply operator

■ If operator results in exception, error

1.7.2 Binary operator - A {/,div} B
■ If A and B are null, return (Long)0

■ If A or B is a BigDecimal or a BigInteger, coerce both to BigDecimal and
return A.divide(B, BigDecimal.ROUND_HALF_UP)

■ Otherwise, coerce both A and B to Double and apply operator

■ If operator results in exception, error

1.7.3 Binary operator - A {%,mod} B
■ If A and B are null, return (Long)0

■ If A or B is a BigDecimal, Float, Double, or String containing ., e, or E,
coerce both A and B to Double and apply operator

■ If A or B is a BigInteger, coerce both to BigInteger and return
A.remainder(B).

■ Otherwise coerce both A and B to Long and apply operator

■ If operator results in exception, error

1.7.4 Unary minus operator - -A
■ If A is null, return (Long)0

■ If A is a BigDecimal or BigInteger, return A.negate().
Chapter 1 Language Syntax and Semantics 11

■ If A is a String:

■ If A contains ., e, or E, coerce to a Double and apply operator

■ Otherwise, coerce to a Long and apply operator

■ If operator results in exception, error

■ If A is Byte, Short, Integer, Long, Float, Double

■ Retain type, apply operator

■ If operator results in exception, error

■ Otherwise, error

1.8 Relational Operators
The relational operators are:

■ == and eq

■ != and ne

■ < and lt

■ > and gt

■ <= and le

■ >= and ge

The second versions of the last 4 operators are made available to avoid having to use
entity references in XML syntax and have the exact same behavior, i.e. < behaves the
same as lt and so on.

The evaluation of relational operators is described in the following sections.

1.8.1 A {<,>,<=,>=,lt,gt,le,ge} B
■ If A==B, if operator is <=, le, >=, or ge return true.

■ If A is null or B is null, return false

■ If A or B is BigDecimal, coerce both A and B to BigDecimal and use the return
value of A.compareTo(B).

■ If A or B is Float or Double coerce both A and B to Double apply operator

■ If A or B is BigInteger, coerce both A and B to BigInteger and use the return
value of A.compareTo(B).
12 Expression Language Specification • Maintenence Release 2 - December 10, 2009

■ If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to
Long and apply operator

■ If A or B is String coerce both A and B to String, compare lexically

■ If A is Comparable, then:

■ If A.compareTo(B) throws exception, error.

■ Otherwise use result of A.compareTo(B)

■ If B is Comparable, then:

■ If B.compareTo(A) throws exception, error.

■ Otherwise use result of B.compareTo(A)

■ Otherwise, error

1.8.2 A {==,!=,eq,ne} B
■ If A==B, apply operator

■ If A is null or B is null return false for == or eq, true for != or ne.

■ If A or B is BigDecimal, coerce both A and B to BigDecimal and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

■ If A or B is Float or Double coerce both A and B to Double, apply operator

■ If A or B is BigInteger, coerce both A and B to BigInteger and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

■ If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to
Long, apply operator

■ If A or B is Boolean coerce both A and B to Boolean, apply operato

■ If A or B is an enum, coerce both A and B to enum, apply operatorr

■ If A or B is String coerce both A and B to String, compare lexically

■ Otherwise if an error occurs while calling A.equals(B), error

■ Otherwise, apply operator to result of A.equals(B)

1.9 Logical Operators
The logical operators are:

■ && and and
Chapter 1 Language Syntax and Semantics 13

■ || and or

■ ! and not

The evaluation of logical operators is described in the following sections.

1.9.1 Binary operator - A {&&,||,and,or} B
■ Coerce both A and B to Boolean, apply operator

The operator stops as soon as the expression can be determined, i.e., A and B and
C and D – if B is false, then only A and B is evaluated.

1.9.2 Unary not operator - {!,not} A
■ Coerce A to Boolean, apply operator

1.10 Empty Operator - empty A

The empty operator is a prefix operator that can be used to determine if a value is
null or empty.

To evaluate empty A

■ If A is null, return true

■ Otherwise, if A is the empty string, then return true

■ Otherwise, if A is an empty array, then return true

■ Otherwise, if A is an empty Map, return true

■ Otherwise, if A is an empty Collection, return true

■ Otherwise return false

1.11 Conditional Operator - A ? B : C

Evaluate B or C, depending on the result of the evaluation of A.

■ Coerce A to Boolean:
14 Expression Language Specification • Maintenence Release 2 - December 10, 2009

■ If A is true, evaluate and return B

■ If A is false, evaluate and return C

1.12 Parentheses
Parentheses can be used to change precedence, as in: ${(a*(b+c))}

1.13 Operator Precedence
Highest to lowest, left-to-right.

■ [] .

■ ()

■ - (unary) not ! empty

■ * / div % mod

■ + - (binary)

■ < > <= >= lt gt le ge

■ == != eq ne

■ && and

■ || or

■ ? :

Qualified functions with a namespace prefix have precedence over the operators.
Thus the expression ${c?b:f()} is illegal because b:f() is being parsed as a
qualified function instead of part of a conditional expression. As usual, () can be
used to make the precedence explicit, e.g ${c?b:(f())}

1.14 Reserved Words
The following words are reserved for the language and must not be used as
identifiers.
Chapter 1 Language Syntax and Semantics 15

and eq gt true instanceof
or ne le false empty
not lt ge null div mod

Note that many of these words are not in the language now, but they may be in the
future, so developers must avoid using these words.

1.15 Functions
The EL has qualified functions, reusing the notion of qualification from XML
namespaces (and attributes), XSL functions, and JSP custom actions. Functions are
mapped to public static methods in Java classes.

The full syntax is that of qualified n-ary functions:

[ns:]f([a1[,a2[,...[,an]]]])

Where ns is the namespace prefix, f is the name of the function, and a is an
argument.

EL functions are mapped, resolved and bound at parse time. It is the responsibility
of the FunctionMapper class to provide the mapping of namespace-qualified
functions to static methods of specific classes when expressions are created. If no
FunctionMapper is provided (by passing in null), functions are disabled.

1.16 Variables
Just like FunctionMapper provides a flexible mechanism to add functions to the
EL, VariableMapper provides a flexible mechanism to support the notion of EL
variables. An EL variable does not directly refer to a model object that can then be
resolved by an ELResolver. Instead, an EL variable refers to an EL expression. The
evaluation of that EL expression yields the value associated with the EL variable.

EL variables are mapped, resolved and bound at parse time. It is the responsibility
of the VariableMapper class to provide the mapping of EL variables to
ValueExpressions when expressions are created. If no VariableMapper is
provided (by passing in null), variable mapping is disabled.

See the javax.el package description for more details.
16 Expression Language Specification • Maintenence Release 2 - December 10, 2009

1.17 Enums
The Unified EL supports Java SE 5 enumerated types. Coercion rules for dealing
with enumerated types are included in the following section. Also, when referring
to values that are instances of an enumerated type from within an EL expression, use
the literal string value to cause coercion to happen via the below rules. For example,
Let’s say we have an enum called Suit that has members Heart, Diamond, Club, and
Spade. Furthermore, let’s say we have a reference in the EL, mySuit, that is a Spade.
If you want to test for equality with the Spade enum, you would say ${mySuit ==
’Spade’}. The type of the mySuit will trigger the invocation of
Enum.valueOf(Suit.class, ’Spade’).

1.18 Type Conversion
Every expression is evaluated in the context of an expected type. The result of the
expression evaluation may not match the expected type exactly, so the rules
described in the following sections are applied.

1.18.1 To Coerce a Value X to Type Y
■ If X is of a primitive type, Let X’ be the equivalent “boxed form” of X.

Otherwise, Let X’ be the same as X.

■ If Y is of a primitive type, Let Y’ be the equivalent “boxed form” of Y.
Otherwise, Let Y’ be the same as Y.

■ Apply the rules in Sections 1.18.2-1.18.7 for coercing X’ to Y’.

■ If Y is a primitive type, then the result is found by "unboxing" the result of the
coercion. If the result of the coercion is null, then error.

■ If Y is not a primitive type, then the result is the result of the coercion.

For example, if coercing an int to a String, "box" the int into an Integer and
apply the rule for coercing an Integer to a String. Or if coercing a String to a
double, apply the rule for coercing a String to a Double, then "unbox" the
resulting Double, making sure the resulting Double isn’t actually null.
Chapter 1 Language Syntax and Semantics 17

1.18.2 Coerce A to String
■ If A is String: return A

■ Otherwise, if A is null: return ""

■ Otherwise, if A is Enum, return A.name()

■ Otherwise, if A.toString() throws an exception, error

■ Otherwise, return A.toString()

1.18.3 Coerce A to Number type N
■ If A is null or "", return 0.

■ If A is Character, convert A to new Short((short)a.charValue()), and
apply the following rules.

■ If A is Boolean, then error.

■ If A is Number type N, return A

■ If A is Number, coerce quietly to type N using the following algorithm:

■ If N is BigInteger
■ If A is a BigDecimal, return A.toBigInteger()
■ Otherwise, return BigInteger.valueOf(A.longValue())

■ If N is BigDecimal,
■ If A is a BigInteger, return new BigDecimal(A)
■ Otherwise, return new BigDecimal(A.doubleValue())

■ If N is Byte, return new Byte(A.byteValue())

■ If N is Short, return new Short(A.shortValue())

■ If N is Integer, return new Integer(A.intValue())

■ If N is Long, return new Long(A.longValue())

■ If N is Float, return new Float(A.floatValue())

■ If N is Double, return new Double(A.doubleValue())

■ Otherwise, error.

■ If A is String, then:

■ If N is BigDecimal then:
■ If new BigDecimal(A) throws an exception then error.
■ Otherwise, return new BigDecimal(A).

■ If N is BigInteger then:
■ If new BigInteger(A) throws an exception then error.
■ Otherwise, return new BigInteger(A).

■ If N.valueOf(A) throws an exception, then error.

■ Otherwise, return N.valueOf(A).
18 Expression Language Specification • Maintenence Release 2 - December 10, 2009

■ Otherwise, error.

1.18.4 Coerce A to Character
■ If A is null or "", return (char)0

■ If A is Character, return A

■ If A is Boolean, error

■ If A is Number, coerce quietly to type Short, then return a Character whose
numeric value is equivalent to that of a Short.

■ If A is String, return A.charAt (0)

■ Otherwise, error

1.18.5 Coerce A to Boolean
■ If A is null or "", return false

■ Otherwise, if A is a Boolean, return A

■ Otherwise, if A is a String, and Boolean.valueOf(A) does not throw an
exception, return it

■ Otherwise, error

1.18.6 Coerce A to an Enum Type T
■ If A is null, return null

■ If A is assignable to T, coerce quietly

■ If A is "", return null.

■ If A is a String call Enum.valueOf(T.getClass(), A) and return the result.

1.18.7 Coerce A to Any Other Type T
■ If A is null, return null

■ If A is assignable to T, coerce quietly

■ If A is a String, and T has no PropertyEditor:

■ If A is "", return null

■ Otherwise error
Chapter 1 Language Syntax and Semantics 19

■ If A is a String and T's PropertyEditor throws an exception:

■ If A is "", return null

■ Otherwise, error

■ Otherwise, apply T's PropertyEditor

■ Otherwise, error

1.19 Collected Syntax
The valid syntax for an expression depends on its type.

For value expressions, the parser first attempts to parse the expression using the
LValue production. If parsing fails, the ValueExpression will be read-only and
parsing is attempted again using the RValue production. For method expressions,
the parser must use only the MethodExpression production.]

These productions take into consideration literal-expressions and composite
expressions wherever they are accepted.

LValue ::= ‘${‘ LValueInner ‘}’
| ‘#{‘ LValueInner ‘}’

LValueInner ::= Identifier
| NonLiteralValuePrefix (ValueSuffix)*

RValue ::= (RValueComponent1)+
| (RValueComponent2)+

RValueComponent1 ::= ‘${‘ Expression ‘}’
| LiteralExpression

RValueComponent2 ::= ‘#{‘ Expression ‘}’
| LiteralExpression

MethodExpression ::= LValue

LiteralExpression::= (LiteralComponent)* ([$#])?
i.e., a string of any characters that
doesn’t include ${ or #{ unless escaped by
\${ or \#{.

LiteralComponent ::= ([^$#\])*\([$#])?
| ([^$#])*([$#][^{])
| ([^$#])*

Expression ::= Expression1 ExpressionRest?
20 Expression Language Specification • Maintenence Release 2 - December 10, 2009

ExpressionRest ::= ‘?’ Expression ‘:’ Expression

Expression1 ::= Expression BinaryOp Expression
| UnaryExpression

BinaryOp ::= 'and'
| ‘&&’
| ‘or’
| ‘||’
| '+'
| '-'
| '*'
| '/'
| 'div'
| '%'
| 'mod'
| '>'
| 'gt'
| '<'
| 'lt'
| '>='
| 'ge'
| '<='
| 'le'
| '=='
| ‘eq’
| ‘!=’
| ‘ne’

UnaryExpression ::= UnaryOp UnaryExpression
| Value

UnaryOp ::= '-'
| ‘!’
| ‘not’
| ‘empty’

Value ::= ValuePrefix (ValueSuffix)*

ValuePrefix ::= Literal
| NonLiteralValuePrefix

NonLiteralValuePrefix ::= '(' Expression ')'
| Identifier
| FunctionInvocation

ValueSuffix ::= ‘.’ Identifier MethodParameters?
| ‘[‘ Expression ‘]’ MethodParameters?

MethodParameters ::= '(' (Expression (‘,’ Expression)*)? ')'

Identifier ::= Java language identifier

FunctionInvocation::=(Identifier ‘:’)? Identifier ‘(‘
(Expression (‘,’ Expression)*)? ‘)’
Chapter 1 Language Syntax and Semantics 21

Literal ::= BooleanLiteral
| IntegerLiteral
| FloatingPointLiteral
| StringLiteral
| NullLiteral

BooleanLiteral ::= 'true'
| ‘false’

StringLiteral ::= '([^'\]|\'|\\)*'
| "([^”\]|\”|\\)*"
i.e., a string of any characters enclosed by
single or double quotes, where \ is used to
escape ', ",and \. It is possible to use single
quotes within double quotes, and vice versa,
without escaping.

IntegerLiteral ::= [‘0’-’9’]+

FloatingPointLiteral::= ([‘0’-’9’])+ ‘.’ ([‘0’-’9’])* Exponent?
| ‘.’ ([‘0’-’9’])+ Exponent?
| ([‘0’-’9’])+ Exponent?

Exponent ::= [‘e’,’E’] ([‘+’,’-’])? ([‘0’-’9’])+

NullLiteral ::= 'null'

Notes
■ * = 0 or more, + = 1 or more, ? = 0 or 1.

■ An identifier is constrained to be a Java identifier - e.g., no -, no /, etc.

■ A String only recognizes a limited set of escape sequences, and \ may not
appear unescaped.

■ The relational operator for equality is == (double equals).

■ The value of an IntegerLiteral ranges from Long.MIN_VALUE to
Long.MAX_VALUE

■ The value of a FloatingPointLiteral ranges from Double.MIN_VALUE to
Double.MAX_VALUE

■ It is illegal to nest ${ or #{ inside an outer ${ or #{.
22 Expression Language Specification • Maintenence Release 2 - December 10, 2009

CHAPTER 2

Java APIs

This chapter describes the Java APIs exposed by the EL specification. The content of
this chapter is generated automatically from Javadoc annotations embedded into the
actual Java classes and interfaces of the implementation. This ensures that both the
specification and implementation are synchronized.
23

24 Expression Language Specification • Maintenence Release 2 - December 10, 2009

2.0 Package

javax.el
2.0.1 Description
Provides the API for the Unified Expression Language 2.2 used by the JSP 2.2 and JSF 2.0 technologies.

The Expression Language (EL) is a simple language designed to satisfy the specific needs of web application
developers. It is currently defined in its own specification document within the JavaServer Pages (tm) (JSP) 2.2
specification, but does not have any dependencies on any portion of the JSP 2.2 specification. It is intended for
general use outside of the JSP and JSF specifications as well.

This package contains the classes and interfaces that describe and define the programmatic access to the
Expression Language engine. The API is logically partitioned as follows:

• EL Context

• Expression Objects

• Creation of Expressions

• Resolution of Model Objects and their Properties

• EL Functions

• EL Variables

2.0.2 EL Context
An important goal of the EL is to ensure it can be used in a variety of environments. It must therefore provide
enough flexibility to adapt to the specific requirements of the environment where it is being used.

Class ELContext52 is what links the EL with the specific environment where it is being used. It provides the
mechanism through which all relevant context for creating or evaluating an expression is specified.

Creation of ELContext objects is controlled through the underlying technology. For example, in JSP, the
JspContext.getELContext() factory method is used.

Some technologies provide the ability to add an ELContextListener58 so that applications and
frameworks can ensure their own context objects are attached to any newly created ELContext.

2.0.3 Expression Objects
At the core of the Expression Language is the notion of an expression that gets parsed according to the grammar
defined by the Expression Language.

There are two types of expressions defined by the EL: value expressions and method expressions. A
ValueExpression102 such as “${customer.name}” can be used either as an rvalue (return the value
associated with property name of the model object customer) or as an lvalue (set the value of the property
name of the model object customer).

A MethodExpression87 such as “${handler.process}” makes it possible to invoke a method
(process) on a specific model object (handler).

In version 2.2, either type of EL expression can represent a method invocation, such as
${trader.buy(“JAVA”)}, where the arugments to the mothod invocation are specified in the expression.

All expression classes extend the base class Expression68, making them serializable and forcing them to
implement equals() and hashCode(). Morevover, each method on these expression classes that actually
javax.el 25

javax.el
evaluates an expression receives a parameter of class ELContext52, which provides the context required to
evaluate the expression.

2.0.4 Creation of Expressions
An expression is created through the ExpressionFactory71 class. The factory provides two creation
methods; one for each type of expression supported by the EL.

To create an expression, one must provide an ELContext52, a string representing the expression, and the
expected type (ValueExpression) or signature (MethodExpression). The ELContext provides the
context necessary to parse an expression. Specifically, if the expression uses an EL function (for example
${fn:toUpperCase(customer.name)}) or an EL variable, then FunctionMapper75 and
VariableMapper108 objects must be available within the ELContext so that EL functions and EL
variables are properly mapped.

2.0.5 Resolution of Model Objects and their Properties
Through the ELResolver61 base class, the EL features a pluggable mechanism to resolve model object
references as well as properties of these objects.

The EL API provides implementations of ELResolver supporting property resolution for common data types
which include arrays (ArrayELResolver29), JavaBeans (BeanELResolver34), Lists
(ListELResolver77), Maps (MapELResolver82), and ResourceBundles
(ResourceBundleELResolver98).

Tools can easily obtain more information about resolvable model objects and their resolvable properties by
calling method getFeatureDescriptors on the ELResolver. This method exposes objects of type
java.beans.FeatureDescriptor, providing all information of interest on top-level model objects as
well as their properties.

2.0.6 EL Functions
If an EL expression uses a function (for example ${fn:toUpperCase(customer.name)}), then a
FunctionMapper75 object must also be specified within the ELContext. The FunctionMapper is
responsible to map ${prefix:name()} style functions to static methods that can execute the specified
functions.

2.0.7 EL Variables
Just like FunctionMapper75 provides a flexible mechanism to add functions to the EL,
VariableMapper108 provides a flexible mechanism to support the notion of EL variables.

An EL variable does not directly refer to a model object that can then be resolved by an ELResolver. Instead,
it refers to an EL expression. The evaluation of that EL expression gives the EL variable its value.

For example, in the following code snippet

<h:inputText value=“#{handler.customer.name}”/>

handler refers to a model object that can be resolved by an EL Resolver.

However, in this other example:

<c:forEach var=“item” items=“#{model.list}”>
<h:inputText value=“#{item.name}”/>

</c:forEach>
item is an EL variable because it does not refer directly to a model object. Instead, it refers to another EL
expression, namely a specific item in the collection referred to by the EL expression #{model.list}.

Assuming that there are three elements in ${model.list}, this means that for each invocation
of <h:inputText>, the following information about item must be preserved in
the VariableMapper108:
26 Expression Language Specification • December 10, 2009

javax.el
first invocation: item maps to first element in ${model.list}
second invocation: item maps to second element in ${model.list}
third invocation: item maps to third element in ${model.list}

VariableMapper provides the mechanisms required to allow the mapping of an EL
variable to the EL expression from which it gets its value.

Class Summary

Interfaces

ELContextListener58 The listener interface for receiving notification when an ELContext52 is created.

Classes

ArrayELResolver29 Defines property resolution behavior on arrays.

BeanELResolver34 Defines property resolution behavior on objects using the JavaBeans component
architecture.

BeanELResolver.BeanPro
perties41

BeanELResolver.BeanPro
perty42

CompositeELResolver44 Maintains an ordered composite list of child ELResolvers.

ELContext52 Context information for expression evaluation.

ELContextEvent56 An event which indicates that an ELContext52 has been created.

ELResolver61 Enables customization of variable, property and method call resolution behavior for EL
expression evaluation.

Expression68 Base class for the expression subclasses ValueExpression102 and
MethodExpression87, implementing characterstics common to both.

ExpressionFactory71

FunctionMapper75 The interface to a map between EL function names and methods.

ListELResolver77 Defines property resolution behavior on instances of java.util.List.

MapELResolver82 Defines property resolution behavior on instances of java.util.Map.

MethodExpression87 An Expression that refers to a method on an object.

MethodInfo90 Holds information about a method that a MethodExpression87 evaluated to.

ResourceBundleELResolv
er98

Defines property resolution behavior on instances of
java.util.ResourceBundle.

ValueExpression102 An Expression that can get or set a value.

ValueReference106 This encapsulates a base model object and one of its properties.

VariableMapper108 The interface to a map between EL variables and the EL expressions they are
associated with.

Exceptions
javax.el 27

javax.el
ELException59 Represents any of the exception conditions that can arise during expression evaluation.

MethodNotFoundExceptio
n92

Thrown when a method could not be found while evaluating a
MethodExpression87.

PropertyNotFoundExcept
ion94

Thrown when a property could not be found while evaluating a
ValueExpression102 or MethodExpression87.

PropertyNotWritableExc
eption96

Thrown when a property could not be written to while setting the value on a
ValueExpression102.

Class Summary
28 Expression Language Specification • December 10, 2009

javax.el ArrayELResolver
2.1 javax.el

ArrayELResolver
2.1.1 Declaration
public class ArrayELResolver extends ELResolver61

java.lang.Object
|
+--javax.el.ELResolver61

|
+--javax.el.ArrayELResolver

2.1.2 Description
Defines property resolution behavior on arrays.

This resolver handles base objects that are Java language arrays. It accepts any object as a property and coerces
that object into an integer index into the array. The resulting value is the value in the array at that index.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true
and setValue(ELContext, Object, Object, Object)33 will always throw
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver44s, to define rich semantics for
evaluating an expression. See the javadocs for ELResolver61 for details.

Since: JSP 2.1

See Also: CompositeELResolver44, ELResolver61

Member Summary

Constructors
ArrayELResolver()30
ArrayELResolver(boolean isReadOnly)30

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object

base)30
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object

base)31
 java.lang.Class getType(ELContext context, java.lang.Object base,

java.lang.Object property)31
 java.lang.Object getValue(ELContext context, java.lang.Object base,

java.lang.Object property)31
 boolean isReadOnly(ELContext context, java.lang.Object base,

java.lang.Object property)32
 void setValue(ELContext context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)33
javax.el ArrayELResolver 29

ArrayELResolver javax.el

ArrayELResolver()
Constructors

2.1.3 ArrayELResolver()

public ArrayELResolver()

Creates a new read/write ArrayELResolver.

2.1.4 ArrayELResolver(boolean)

public ArrayELResolver(boolean isReadOnly)

Creates a new ArrayELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify arrays; false otherwise.

Methods

2.1.5 getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is a Java language array, returns the most general type that this resolver accepts for the
property argument. Otherwise, returns null.

Assuming the base is an array, this method will always return Integer.class. This is because arrays
accept integers for their index.

Overrides: getCommonPropertyType63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are a Java language array are handled by this resolver.

Returns: null if base is not a Java language array; otherwise Integer.class.

Inherited Member Summary

Fields inherited from class ELResolver61

RESOLVABLE_AT_DESIGN_TIME62, TYPE63

Methods inherited from class ELResolver61

invoke(ELContext, Object, Object, Class[], Object[])65

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
30 Expression Language Specification • December 10, 2009

javax.el ArrayELResolver

getFeatureDescriptors(ELContext, Object)
2.1.6 getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

Always returns null, since there is no reason to iterate through set set of all integers.

The getCommonPropertyType(ELContext, Object)30 method returns sufficient information
about what properties this resolver accepts.

Overrides: getFeatureDescriptors63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are a Java language array are handled by this resolver.

Returns: null.

2.1.7 getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is an array, returns the most general acceptable type for a value in this array.

If the base is a array, the propertyResolved property of the ELContext object must be set to
true by this resolver, before returning. If this property is not true after this method is called, the caller
should ignore the return value.

Assuming the base is an array, this method will always return
base.getClass().getComponentType(), which is the most general type of component that can
be stored at any given index in the array.

Overrides: getType64 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are Java language arrays are handled by this resolver.

property - The index of the element in the array to return the acceptable type for. Will be coerced
into an integer, but otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then the most general
acceptable type; otherwise undefined.

Throws:
PropertyNotFoundException94 - if the given index is out of bounds for this array.

java.lang.NullPointerException - if context is null

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.1.8 getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a Java language array, returns the value at the given index. The index is specified by the
property argument, and coerced into an integer. If the coercion could not be performed, an
IllegalArgumentException is thrown. If the index is out of bounds, null is returned.
javax.el ArrayELResolver 31

ArrayELResolver javax.el

isReadOnly(ELContext, Object, Object)
If the base is a Java language array, the propertyResolved property of the ELContext object must
be set to true by this resolver, before returning. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: getValue65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are Java language arrays are handled by this resolver.

property - The index of the value to be returned. Will be coerced into an integer.

Returns: If the propertyResolved property of ELContext was set to true, then the value at the
given index or null if the index was out of bounds. Otherwise, undefined.

Throws:
java.lang.IllegalArgumentException - if the property could not be coerced into an
integer.

java.lang.NullPointerException - if context is null.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.1.9 isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a Java language array, returns whether a call to setValue(ELContext, Object,
Object, Object)33 will always fail.

If the base is a Java language array, the propertyResolved property of the ELContext object must
be set to true by this resolver, before returning. If this property is not true after this method is called, the
caller should ignore the return value.

If this resolver was constructed in read-only mode, this method will always return true. Otherwise, it
returns false.

Overrides: isReadOnly66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are a Java language array are handled by this resolver.

property - The index of the element in the array to return the acceptable type for. Will be coerced
into an integer, but otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling
the setValue method will always fail or false if it is possible that such a call may succeed;
otherwise undefined.

Throws:
PropertyNotFoundException94 - if the given index is out of bounds for this array.

java.lang.NullPointerException - if context is null

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.
32 Expression Language Specification • December 10, 2009

javax.el ArrayELResolver

setValue(ELContext, Object, Object, Object)
2.1.10 setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

If the base object is a Java language array, attempts to set the value at the given index with the given value.
The index is specified by the property argument, and coerced into an integer. If the coercion could not be
performed, an IllegalArgumentException is thrown. If the index is out of bounds, a
PropertyNotFoundException is thrown.

If the base is a Java language array, the propertyResolved property of the ELContext object must
be set to true by this resolver, before returning. If this property is not true after this method is called, the
caller can safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw
PropertyNotWritableException.

Overrides: setValue66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The array to be modified. Only bases that are Java language arrays are handled by this resolver.

property - The index of the value to be set. Will be coerced into an integer.

val - The value to be set at the given index.

Throws:
java.lang.ClassCastException - if the class of the specified element prevents it from being
added to this array.

java.lang.NullPointerException - if context is null.

java.lang.IllegalArgumentException - if the property could not be coerced into an
integer, or if some aspect of the specified element prevents it from being added to this array.

PropertyNotWritableException96 - if this resolver was constructed in read-only mode.

PropertyNotFoundException94 - if the given index is out of bounds for this array.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.
javax.el ArrayELResolver 33

BeanELResolver javax.el

setValue(ELContext, Object, Object, Object)
2.2 javax.el

BeanELResolver
2.2.1 Declaration
public class BeanELResolver extends ELResolver61

java.lang.Object
|
+--javax.el.ELResolver61

|
+--javax.el.BeanELResolver

2.2.2 Description
Defines property resolution behavior on objects using the JavaBeans component architecture.

This resolver handles base objects of any type, as long as the base is not null. It accepts any object as a
property or method, and coerces it to a string.

For property resolution, the property string is used to find a JavaBeans compliant property on the base object.
The value is accessed using JavaBeans getters and setters.

For method resolution, the method string is the name of the method in the bean. The parameter types can be
optionally specified to identify the method. If the parameter types are not specified, the parameter objects are
used in the method resolution.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true
and setValue(ELContext, Object, Object, Object)39 will always throw
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver44s, to define rich semantics for
evaluating an expression. See the javadocs for ELResolver61 for details.

Because this resolver handles base objects of any type, it should be placed near the end of a composite resolver.
Otherwise, it will claim to have resolved a property before any resolvers that come after it get a chance to test if
they can do so as well.

Since: JSP 2.1

See Also: CompositeELResolver44, ELResolver61

Member Summary

Nested Classes
protected static class BeanELResolver.BeanProperties41
protected static class BeanELResolver.BeanProperty42

Constructors
BeanELResolver()35
BeanELResolver(boolean isReadOnly)35

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object

base)35
34 Expression Language Specification • December 10, 2009

javax.el BeanELResolver

BeanELResolver()
Constructors

2.2.3 BeanELResolver()

public BeanELResolver()

Creates a new read/write BeanELResolver.

2.2.4 BeanELResolver(boolean)

public BeanELResolver(boolean isReadOnly)

Creates a new BeanELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify beans; false otherwise.

Methods

2.2.5 getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object
base)36

 java.lang.Class getType(ELContext context, java.lang.Object base,
java.lang.Object property)36

 java.lang.Object getValue(ELContext context, java.lang.Object base,
java.lang.Object property)37

 java.lang.Object invoke(ELContext context, java.lang.Object base,
java.lang.Object method, java.lang.Class[] paramTypes,
java.lang.Object[] params)37

 boolean isReadOnly(ELContext context, java.lang.Object base,
java.lang.Object property)38

 void setValue(ELContext context, java.lang.Object base,
java.lang.Object property, java.lang.Object val)39

Inherited Member Summary

Fields inherited from class ELResolver61

RESOLVABLE_AT_DESIGN_TIME62, TYPE63

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary
javax.el BeanELResolver 35

BeanELResolver javax.el

getFeatureDescriptors(ELContext, Object)
If the base object is not null, returns the most general type that this resolver accepts for the property
argument. Otherwise, returns null.

Assuming the base is not null, this method will always return Object.class. This is because any
object is accepted as a key and is coerced into a string.

Overrides: getCommonPropertyType63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean to analyze.

Returns: null if base is null; otherwise Object.class.

2.2.6 getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is not null, returns an Iterator containing the set of JavaBeans properties available
on the given object. Otherwise, returns null.

The Iterator returned must contain zero or more instances of
java.beans.FeatureDescriptor. Each info object contains information about a property in the
bean, as obtained by calling the BeanInfo.getPropertyDescriptors method. The
FeatureDescriptor is initialized using the same fields as are present in the
PropertyDescriptor, with the additional required named attributes “type” and
“resolvableAtDesignTime” set as follows:

ELResolver.TYPE63 - The runtime type of the property, from
PropertyDescriptor.getPropertyType().
ELResolver.RESOLVABLE_AT_DESIGN_TIME62 - true.

Overrides: getFeatureDescriptors63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean to analyze.

Returns: An Iterator containing zero or more FeatureDescriptor objects, each representing a
property on this bean, or null if the base object is null.

2.2.7 getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is not null, returns the most general acceptable type that can be set on this bean
property.

If the base is not null, the propertyResolved property of the ELContext object must be set to
true by this resolver, before returning. If this property is not true after this method is called, the caller
should ignore the return value.

The provided property will first be coerced to a String. If there is a BeanInfoProperty for this
property and there were no errors retrieving it, the propertyType of the propertyDescriptor is
returned. Otherwise, a PropertyNotFoundException is thrown.

Overrides: getType64 in class ELResolver61
36 Expression Language Specification • December 10, 2009

javax.el BeanELResolver

getValue(ELContext, Object, Object)
Parameters:
context - The context of this evaluation.

base - The bean to analyze.

property - The name of the property to analyze. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then the most general
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if base is not null and the specified property does not
exist or is not readable.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.2.8 getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is not null, returns the current value of the given property on this bean.

If the base is not null, the propertyResolved property of the ELContext object must be set to
true by this resolver, before returning. If this property is not true after this method is called, the caller
should ignore the return value.

The provided property name will first be coerced to a String. If the property is a readable property of the
base object, as per the JavaBeans specification, then return the result of the getter call. If the getter throws
an exception, it is propagated to the caller. If the property is not found or is not readable, a
PropertyNotFoundException is thrown.

Overrides: getValue65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean on which to get the property.

property - The name of the property to get. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then the value of the
given property. Otherwise, undefined.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException94 - if base is not null and the specified property does not
exist or is not readable.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.2.9 invoke(ELContext, Object, Object, Class[], Object[])

public java.lang.Object invoke(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object method, java.lang.Class[] paramTypes,

java.lang.Object[] params)
javax.el BeanELResolver 37

BeanELResolver javax.el

isReadOnly(ELContext, Object, Object)
If the base object is not null, invoke the method, with the given parameters on this bean. The return value
from the method is returned.

If the base is not null, the propertyResolved property of the ELContext object must be set to
true by this resolver, before returning. If this property is not true after this method is called, the caller
should ignore the return value.

The provided method object will first be coerced to a String. The methods in the bean is then examined
and an attempt will be made to select one for invocation. If no suitable can be found, a
MethodNotFoundException is thrown. If the given paramTypes is not null, select the method with
the given name and parameter types. Else select the method with the given name that has the same number
of parameters. If there are more than one such method, the method selection process is undefined. Else
select the method with the given name that takes a variable number of arguments. Note the resolution for
overloaded methods will likely be clarified in a future version of the spec. The provide parameters are
coerced to the correcponding parameter types of the method, and the method is then invoked.

Overrides: invoke65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean on which to invoke the method

method - The simple name of the method to invoke. Will be coerced to a String. If method is
“<init>”or “<clinit>” a MethodNotFoundException is thrown.

paramTypes - An array of Class objects identifying the method’s formal parameter types, in declared
order. Use an empty array if the method has no parameters. Can be null, in which case the method’s
formal parameter types are assumed to be unknown.

params - The parameters to pass to the method, or null if no parameters.

Returns: The result of the method invocation (null if the method has a void return type).

Throws:
MethodNotFoundException92 - if no suitable method can be found.

ELException59 - if an exception was thrown while performing (base, method) resolution. The
thrown exception must be included as the cause property of this exception, if available. If the exception
thrown is an InvocationTargetException, extract its cause and pass it to the
ELException constructor.

Since: EL 2.2

2.2.10 isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is not null, returns whether a call to setValue(ELContext, Object,
Object, Object)39 will always fail.

If the base is not null, the propertyResolved property of the ELContext object must be set to
true by this resolver, before returning. If this property is not true after this method is called, the caller
can safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always return true.
38 Expression Language Specification • December 10, 2009

javax.el BeanELResolver

setValue(ELContext, Object, Object, Object)
The provided property name will first be coerced to a String. If property is a writable property of base,
false is returned. If the property is found but is not writable, true is returned. If the property is not
found, a PropertyNotFoundException is thrown.

Overrides: isReadOnly66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean to analyze.

property - The name of the property to analyzed. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling
the setValue method will always fail or false if it is possible that such a call may succeed;
otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if base is not null and the specified property does not
exist.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.2.11 setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

If the base object is not null, attempts to set the value of the given property on this bean.

If the base is not null, the propertyResolved property of the ELContext object must be set to
true by this resolver, before returning. If this property is not true after this method is called, the caller
can safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw
PropertyNotWritableException.

The provided property name will first be coerced to a String. If property is a writable property of base
(as per the JavaBeans Specification), the setter method is called (passing value). If the property exists but
does not have a setter, then a PropertyNotFoundException is thrown. If the property does not exist,
a PropertyNotFoundException is thrown.

Overrides: setValue66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean on which to set the property.

property - The name of the property to set. Will be coerced to a String.

val - The value to be associated with the specified key.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException94 - if base is not null and the specified property does not
exist.
javax.el BeanELResolver 39

BeanELResolver javax.el

setValue(ELContext, Object, Object, Object)
PropertyNotWritableException96 - if this resolver was constructed in read-only mode, or if
there is no setter for the property.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.
40 Expression Language Specification • December 10, 2009

javax.el BeanELResolver.BeanProperties

BeanELResolver.BeanProperties(Class)
2.3 javax.el

BeanELResolver.BeanProperties
2.3.1 Declaration
protected static final class BeanELResolver.BeanProperties

java.lang.Object
|
+--javax.el.BeanELResolver.BeanProperties

Enclosing Class: BeanELResolver34

Constructors

2.3.2 BeanELResolver.BeanProperties(Class)

public BeanELResolver.BeanProperties(java.lang.Class baseClass)

Methods

2.3.3 getBeanProperty(String)

public javax.el.BeanELResolver.BeanProperty42 getBeanProperty(java.lang.String property)

Member Summary

Constructors
BeanELResolver.BeanProperties(java.lang.Class baseClass)41

Methods

BeanELResolver.BeanPro
perty

getBeanProperty(java.lang.String property)41

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
javax.el BeanELResolver.BeanProperties 41

BeanELResolver.BeanProperty javax.el

BeanELResolver.BeanProperty(Class, PropertyDescriptor)
2.4 javax.el

BeanELResolver.BeanProperty
2.4.1 Declaration
protected static final class BeanELResolver.BeanProperty

java.lang.Object
|
+--javax.el.BeanELResolver.BeanProperty

Enclosing Class: BeanELResolver34

Constructors

2.4.2 BeanELResolver.BeanProperty(Class, PropertyDescriptor)

public BeanELResolver.BeanProperty(java.lang.Class baseClass,

java.beans.PropertyDescriptor descriptor)

Member Summary

Constructors
BeanELResolver.BeanProperty(java.lang.Class baseClass,
java.beans.PropertyDescriptor descriptor)42

Methods
 java.lang.Class getPropertyType()43

java.lang.reflect.Meth
od

getReadMethod()43

java.lang.reflect.Meth
od

getWriteMethod()43

 boolean isReadOnly()43

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
42 Expression Language Specification • December 10, 2009

javax.el BeanELResolver.BeanProperty

getPropertyType()
Methods

2.4.3 getPropertyType()

public java.lang.Class getPropertyType()

2.4.4 getReadMethod()

public java.lang.reflect.Method getReadMethod()

2.4.5 getWriteMethod()

public java.lang.reflect.Method getWriteMethod()

2.4.6 isReadOnly()

public boolean isReadOnly()
javax.el BeanELResolver.BeanProperty 43

CompositeELResolver javax.el

isReadOnly()
2.5 javax.el

CompositeELResolver
2.5.1 Declaration
public class CompositeELResolver extends ELResolver61

java.lang.Object
|
+--javax.el.ELResolver61

|
+--javax.el.CompositeELResolver

2.5.2 Description
Maintains an ordered composite list of child ELResolvers.

Though only a single ELResolver is associated with an ELContext, there are usually multiple resolvers
considered for any given variable or property resolution. ELResolvers are combined together using a
CompositeELResolver, to define rich semantics for evaluating an expression.

For the getValue(ELContext, Object, Object)47, getType(ELContext, Object,
Object)46, setValue(ELContext, Object, Object, Object)50 and
isReadOnly(ELContext, Object, Object)49 methods, an ELResolver is not responsible for
resolving all possible (base, property) pairs. In fact, most resolvers will only handle a base of a single type. To
indicate that a resolver has successfully resolved a particular (base, property) pair, it must set the
propertyResolved property of the ELContext to true. If it could not handle the given pair, it must
leave this property alone. The caller must ignore the return value of the method if propertyResolved is
false.

The CompositeELResolver initializes the ELContext.propertyResolved flag to false, and uses
it as a stop condition for iterating through its component resolvers.

The ELContext.propertyResolved flag is not used for the design-time methods
getFeatureDescriptors(ELContext, Object)46 and
getCommonPropertyType(ELContext, Object)45. Instead, results are collected and combined
from all child ELResolvers for these methods.

Since: JSP 2.1

See Also: ELContext52, ELResolver61

Member Summary

Constructors
CompositeELResolver()45

Methods
 void add(ELResolver elResolver)45

 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object
base)45

 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object
base)46
44 Expression Language Specification • December 10, 2009

javax.el CompositeELResolver

CompositeELResolver()
Constructors

2.5.3 CompositeELResolver()

public CompositeELResolver()

Methods

2.5.4 add(ELResolver)

public void add(javax.el.ELResolver61 elResolver)

Adds the given resolver to the list of component resolvers.

Resolvers are consulted in the order in which they are added.

Parameters:
elResolver - The component resolver to add.

Throws:
java.lang.NullPointerException - If the provided resolver is null.

2.5.5 getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

 java.lang.Class getType(ELContext context, java.lang.Object base,
java.lang.Object property)46

 java.lang.Object getValue(ELContext context, java.lang.Object base,
java.lang.Object property)47

 java.lang.Object invoke(ELContext context, java.lang.Object base,
java.lang.Object method, java.lang.Class[] paramTypes,
java.lang.Object[] params)48

 boolean isReadOnly(ELContext context, java.lang.Object base,
java.lang.Object property)49

 void setValue(ELContext context, java.lang.Object base,
java.lang.Object property, java.lang.Object val)50

Inherited Member Summary

Fields inherited from class ELResolver61

RESOLVABLE_AT_DESIGN_TIME62, TYPE63

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary
javax.el CompositeELResolver 45

CompositeELResolver javax.el

getFeatureDescriptors(ELContext, Object)
Returns the most general type that this resolver accepts for the property argument, given a base object.
One use for this method is to assist tools in auto-completion. The result is obtained by querying all
component resolvers.

The Class returned is the most specific class that is a common superclass of all the classes returned by
each component resolver’s getCommonPropertyType method. If null is returned by a resolver, it is
skipped.

Overrides: getCommonPropertyType63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The base object to return the most general property type for, or null to enumerate the set of
top-level variables that this resolver can evaluate.

Returns: null if this ELResolver does not know how to handle the given base object; otherwise
Object.class if any type of property is accepted; otherwise the most general property type
accepted for the given base.

2.5.6 getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

Returns information about the set of variables or properties that can be resolved for the given base object.
One use for this method is to assist tools in auto-completion. The results are collected from all component
resolvers.

The propertyResolved property of the ELContext is not relevant to this method. The results of all
ELResolvers are concatenated.

The Iterator returned is an iterator over the collection of FeatureDescriptor objects returned by
the iterators returned by each component resolver’s getFeatureDescriptors method. If null is
returned by a resolver, it is skipped.

Overrides: getFeatureDescriptors63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The base object whose set of valid properties is to be enumerated, or null to enumerate the set
of top-level variables that this resolver can evaluate.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor
objects, or null if this resolver does not handle the given base object or that the results are too
complex to represent with this method

2.5.7 getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

For a given base and property, attempts to identify the most general type that is acceptable for an
object to be passed as the value parameter in a future call to the setValue(ELContext, Object,
Object, Object)50 method. The result is obtained by querying all component resolvers.
46 Expression Language Specification • December 10, 2009

javax.el CompositeELResolver

getValue(ELContext, Object, Object)
If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite:

1. The getType() method is called, passing in the provided context, base and property.

2. If the ELContext’s propertyResolved flag is false then iteration continues.

3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by
getType() is returned by this method.

If none of the component resolvers were able to perform this operation, the value null is returned and the
propertyResolved flag remains set to false

.

Any exception thrown by component resolvers during the iteration is propagated to the caller of this
method.

Overrides: getType64 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level
variable.

property - The property or variable to return the acceptable type for.

Returns: If the propertyResolved property of ELContext was set to true, then the most general
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.5.8 getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

Attempts to resolve the given property object on the given base object by querying all component
resolvers.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite:

1. The getValue() method is called, passing in the provided context, base and property.

2. If the ELContext’s propertyResolved flag is false then iteration continues.
javax.el CompositeELResolver 47

CompositeELResolver javax.el

invoke(ELContext, Object, Object, Class[], Object[])
3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by
getValue() is returned by this method.

If none of the component resolvers were able to perform this operation, the value null is returned and the
propertyResolved flag remains set to false

.

Any exception thrown by component resolvers during the iteration is propagated to the caller of this
method.

Overrides: getValue65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be returned, or null to resolve a top-level variable.

property - The property or variable to be resolved.

Returns: If the propertyResolved property of ELContext was set to true, then the result of the
variable or property resolution; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.5.9 invoke(ELContext, Object, Object, Class[], Object[])

public java.lang.Object invoke(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object method, java.lang.Class[] paramTypes,

java.lang.Object[] params)

Attemps to resolve and invoke the given method on the given base object by querying all component
resolvers.

If this resolver handles the given (base, method) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite:

1. The invoke()method is called, passing in the provided context, base, method, paramTypes,
and params.

2. If the ELContext’s propertyResolved flag is false then iteration continues.

3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by
getValue() is returned by this method.

If none of the component resolvers were able to perform this operation, the value null is returned and the
propertyResolved flag remains set to false

.

48 Expression Language Specification • December 10, 2009

javax.el CompositeELResolver

isReadOnly(ELContext, Object, Object)
Any exception thrown by component resolvers during the iteration is propagated to the caller of this
method.

Overrides: invoke65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bean on which to invoke the method

method - The simple name of the method to invoke. Will be coerced to a String. If method is “”or
“” a NoSuchMethodException is raised.

paramTypes - An array of Class objects identifying the method’s formal parameter types, in declared
order. Use an empty array if the method has no parameters. Can be null, in which case the method’s
formal parameter types are assumed to be unknown.

params - The parameters to pass to the method, or null if no parameters.

Returns: The result of the method invocation (null if the method has a void return type).

Since: EL 2.2

2.5.10 isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

For a given base and property, attempts to determine whether a call to setValue(ELContext,
Object, Object, Object)50 will always fail. The result is obtained by querying all component
resolvers.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite:

1. The isReadOnly() method is called, passing in the provided context, base and property.

2. If the ELContext’s propertyResolved flag is false then iteration continues.

3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by
isReadOnly() is returned by this method.

If none of the component resolvers were able to perform this operation, the value false is returned and
the propertyResolved flag remains set to false

.

Any exception thrown by component resolvers during the iteration is propagated to the caller of this
method.

Overrides: isReadOnly66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level
variable.

property - The property or variable to return the read-only status for.
javax.el CompositeELResolver 49

CompositeELResolver javax.el

setValue(ELContext, Object, Object, Object)
Returns: If the propertyResolved property of ELContext was set to true, then true if the
property is read-only or false if not; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.5.11 setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

Attempts to set the value of the given property object on the given base object. All component
resolvers are asked to attempt to set the value.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller can safely assume no value has been set.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite:

1. The setValue() method is called, passing in the provided context, base, property and
value.

2. If the ELContext’s propertyResolved flag is false then iteration continues.

3. Otherwise, iteration stops and no more component resolvers are considered.

If none of the component resolvers were able to perform this operation, the propertyResolved flag
remains set to false

.

Any exception thrown by component resolvers during the iteration is propagated to the caller of this
method.

Overrides: setValue66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be set, or null to set a top-level variable.

property - The property or variable to be set.

val - The value to set the property or variable to.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist.

PropertyNotWritableException96 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property is not writable.
50 Expression Language Specification • December 10, 2009

javax.el CompositeELResolver

setValue(ELContext, Object, Object, Object)
ELException59 - if an exception was thrown while attempting to set the property or variable. The
thrown exception must be included as the cause property of this exception, if available.
javax.el CompositeELResolver 51

ELContext javax.el

setValue(ELContext, Object, Object, Object)
2.6 javax.el

ELContext
2.6.1 Declaration
public abstract class ELContext

java.lang.Object
|
+--javax.el.ELContext

2.6.2 Description
Context information for expression evaluation.

To evaluate an Expression68, an ELContext must be provided. The ELContext holds:

• a reference to the base ELResolver61 that will be consulted to resolve model objects and their properties

• a reference to FunctionMapper75 that will be used to resolve EL Functions.

• a reference to VariableMapper108 that will be used to resolve EL Variables.

• a collection of all the relevant context objects for use by ELResolvers

• state information during the evaluation of an expression, such as whether a property has been resolved yet

The collection of context objects is necessary because each ELResolver may need access to a different
context object. For example, JSP and Faces resolvers need access to a
javax.servlet.jsp.JspContext and a javax.faces.context.FacesContext, respectively.

Creation of ELContext objects is controlled through the underlying technology. For example, in JSP the
JspContext.getELContext() factory method is used. Some technologies provide the ability to add an
ELContextListener58 so that applications and frameworks can ensure their own context objects are
attached to any newly created ELContext.

Because it stores state during expression evaluation, an ELContext object is not thread-safe. Care should be
taken to never share an ELContext instance between two or more threads.

Since: JSP 2.1

See Also: ELContextListener58, ELContextEvent56, ELResolver61, FunctionMapper75,
VariableMapper108, javax.servlet.jsp.JspContext

Member Summary

Constructors
ELContext()53

Methods
 java.lang.Object getContext(java.lang.Class key)53

abstract ELResolver getELResolver()53
abstract

FunctionMapper
getFunctionMapper()54

 java.util.Locale getLocale()54
52 Expression Language Specification • December 10, 2009

javax.el ELContext

ELContext()
Constructors

2.6.3 ELContext()

public ELContext()

Methods

2.6.4 getContext(Class)

public java.lang.Object getContext(java.lang.Class key)

Returns the context object associated with the given key.

The ELContext maintains a collection of context objects relevant to the evaluation of an expression.
These context objects are used by ELResolvers. This method is used to retrieve the context with the
given key from the collection.

By convention, the object returned will be of the type specified by the key. However, this is not required
and the key is used strictly as a unique identifier.

Parameters:
key - The unique identifier that was used to associate the context object with this ELContext.

Returns: The context object associated with the given key, or null if no such context was found.

Throws:
java.lang.NullPointerException - if key is null.

2.6.5 getELResolver()

public abstract javax.el.ELResolver61 getELResolver()

Retrieves the ELResolver associated with this context.

abstract
VariableMapper

getVariableMapper()54

 boolean isPropertyResolved()54
 void putContext(java.lang.Class key, java.lang.Object

contextObject)54
 void setLocale(java.util.Locale locale)55
 void setPropertyResolved(boolean resolved)55

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)

Member Summary
javax.el ELContext 53

ELContext javax.el

getFunctionMapper()
The ELContext maintains a reference to the ELResolver that will be consulted to resolve variables
and properties during an expression evaluation. This method retrieves the reference to the resolver.

Once an ELContext is constructed, the reference to the ELResolver associated with the context cannot
be changed.

Returns: The resolver to be consulted for variable and property resolution during expression evaluation.

2.6.6 getFunctionMapper()

public abstract javax.el.FunctionMapper75 getFunctionMapper()

Retrieves the FunctionMapper associated with this ELContext.

Returns: The function mapper to be consulted for the resolution of EL functions.

2.6.7 getLocale()

public java.util.Locale getLocale()

Get the Locale stored by a previous invocation to setLocale(Locale)55. If this method returns non
null, this Locale must be used for all localization needs in the implementation. The Locale must not
be cached to allow for applications that change Locale dynamically.

Returns: The Locale in which this instance is operating. Used primarily for message localization.

2.6.8 getVariableMapper()

public abstract javax.el.VariableMapper108 getVariableMapper()

Retrieves the VariableMapper associated with this ELContext.

Returns: The variable mapper to be consulted for the resolution of EL variables.

2.6.9 isPropertyResolved()

public boolean isPropertyResolved()

Returns whether an ELResolver61 has successfully resolved a given (base, property) pair.

The CompositeELResolver44 checks this property to determine whether it should consider or skip
other component resolvers.

Returns: true if the property has been resolved, or false if not.

See Also: CompositeELResolver44

2.6.10 putContext(Class, Object)

public void putContext(java.lang.Class key, java.lang.Object contextObject)

Associates a context object with this ELContext.

The ELContext maintains a collection of context objects relevant to the evaluation of an expression.
These context objects are used by ELResolvers. This method is used to add a context object to that
collection.

By convention, the contextObject will be of the type specified by the key. However, this is not
required and the key is used strictly as a unique identifier.

Parameters:
key - The key used by an @{link ELResolver} to identify this context object.
54 Expression Language Specification • December 10, 2009

javax.el ELContext

setLocale(Locale)
contextObject - The context object to add to the collection.

Throws:
java.lang.NullPointerException - if key is null or contextObject is null.

2.6.11 setLocale(Locale)

public void setLocale(java.util.Locale locale)

Set the Locale for this instance. This method may be called by the party creating the instance, such as
JavaServer Faces or JSP, to enable the EL implementation to provide localized messages to the user. If no
Locale is set, the implementation must use the locale returned by Locale.getDefault().

2.6.12 setPropertyResolved(boolean)

public void setPropertyResolved(boolean resolved)

Called to indicate that a ELResolver has successfully resolved a given (base, property) pair.

The CompositeELResolver44 checks this property to determine whether it should consider or skip
other component resolvers.

Parameters:
resolved - true if the property has been resolved, or false if not.

See Also: CompositeELResolver44
javax.el ELContext 55

ELContextEvent javax.el

setPropertyResolved(boolean)
2.7 javax.el

ELContextEvent
2.7.1 Declaration
public class ELContextEvent extends java.util.EventObject

java.lang.Object
|
+--java.util.EventObject

|
+--javax.el.ELContextEvent

All Implemented Interfaces: java.io.Serializable

2.7.2 Description
An event which indicates that an ELContext52 has been created. The source object is the ELContext that was
created.

Since: JSP 2.1

See Also: ELContext52, ELContextListener58

Member Summary

Constructors
ELContextEvent(ELContext source)57

Methods
 ELContext getELContext()57

Inherited Member Summary

Fields inherited from class EventObject

source

Methods inherited from class EventObject

getSource(), toString()

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)
56 Expression Language Specification • December 10, 2009

javax.el ELContextEvent

ELContextEvent(ELContext)
Constructors

2.7.3 ELContextEvent(ELContext)

public ELContextEvent(javax.el.ELContext52 source)

Constructs an ELContextEvent object to indicate that an ELContext has been created.

Parameters:
source - the ELContext that was created.

Methods

2.7.4 getELContext()

public javax.el.ELContext52 getELContext()

Returns the ELContext that was created. This is a type-safe equivalent of the
java.util.EventObject.getSource() method.

Returns: the ELContext that was created.
javax.el ELContextEvent 57

ELContextListener javax.el

contextCreated(ELContextEvent)
2.8 javax.el

ELContextListener
2.8.1 Declaration
public interface ELContextListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

2.8.2 Description
The listener interface for receiving notification when an ELContext52 is created.

Since: JSP 2.1

See Also: ELContext52, ELContextEvent56

Methods

2.8.3 contextCreated(ELContextEvent)

public void contextCreated(javax.el.ELContextEvent56 ece)

Invoked when a new ELContext has been created.

Parameters:
ece - the notification event.

Member Summary

Methods
 void contextCreated(ELContextEvent ece)58
58 Expression Language Specification • December 10, 2009

javax.el ELException

contextCreated(ELContextEvent)
2.9 javax.el

ELException
2.9.1 Declaration
public class ELException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: MethodNotFoundException92,
PropertyNotFoundException94, PropertyNotWritableException96

2.9.2 Description
Represents any of the exception conditions that can arise during expression evaluation.

Since: JSP 2.1

Member Summary

Constructors
ELException()60
ELException(java.lang.String pMessage)60
ELException(java.lang.String pMessage, java.lang.Throwable
pRootCause)60
ELException(java.lang.Throwable pRootCause)60

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
javax.el ELException 59

ELException javax.el

ELException()
Constructors

2.9.3 ELException()

public ELException()

Creates an ELException with no detail message.

2.9.4 ELException(String)

public ELException(java.lang.String pMessage)

Creates an ELException with the provided detail message.

Parameters:
pMessage - the detail message

2.9.5 ELException(Throwable)

public ELException(java.lang.Throwable pRootCause)

Creates an ELException with the given cause.

Parameters:
pRootCause - the originating cause of this exception

2.9.6 ELException(String, Throwable)

public ELException(java.lang.String pMessage, java.lang.Throwable pRootCause)

Creates an ELException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
60 Expression Language Specification • December 10, 2009

javax.el ELResolver

ELException(String, Throwable)
2.10 javax.el

ELResolver
2.10.1 Declaration
public abstract class ELResolver

java.lang.Object
|
+--javax.el.ELResolver

Direct Known Subclasses: ArrayELResolver29, BeanELResolver34,
CompositeELResolver44, ListELResolver77, MapELResolver82,
ResourceBundleELResolver98

2.10.2 Description
Enables customization of variable, property and method call resolution behavior for EL expression evaluation.

While evaluating an expression, the ELResolver associated with the ELContext52 is consulted to do the
initial resolution of the first variable of an expression. It is also consulted when a . or [] operator is
encountered.

For example, in the EL expression ${employee.lastName}, the ELResolver determines what object
employee refers to, and what it means to get the lastName property on that object.

Most methods in this class accept a base and property parameter. In the case of variable resolution (e.g.
determining what employee refers to in ${employee.lastName}), the base parameter will be null
and the property parameter will always be of type String. In this case, if the property is not a String,
the behavior of the ELResolver is undefined.

In the case of property resolution, the base parameter identifies the base object and the property object
identifies the property on that base. For example, in the expression ${employee.lastName}, base is the
result of the variable resolution for employee and property is the string “lastName”. In the expression
${y[x]}, base is the result of the variable resolution for y and property is the result of the variable
resolution for x.

In the case of method call resolution, the base parameter indentifies the base object and the method
parameter identifies a method on that base. In the case of overloaded methods, the paramTypes parameter
can be optionally used to identify a method. The paramsparameter are the parameters for the method call, and
can also be used for resolving overloaded methods when the paramTypes parameter is not specified.

Though only a single ELResolver is associated with an ELContext, there are usually multiple resolvers
considered for any given variable or property resolution. ELResolvers are combined together using
CompositeELResolver44s, to define rich semantics for evaluating an expression.

For the getValue(ELContext, Object, Object)65, getType(ELContext, Object,
Object)64, setValue(ELContext, Object, Object, Object)66 and
isReadOnly(ELContext, Object, Object)66 methods, an ELResolver is not responsible for
resolving all possible (base, property) pairs. In fact, most resolvers will only handle a base of a single type. To
indicate that a resolver has successfully resolved a particular (base, property) pair, it must set the
propertyResolved property of the ELContext to true. If it could not handle the given pair, it must
leave this property alone. The caller must ignore the return value of the method if propertyResolved is
false.
javax.el ELResolver 61

ELResolver javax.el

RESOLVABLE_AT_DESIGN_TIME
The getFeatureDescriptors(ELContext, Object)63 and
getCommonPropertyType(ELContext, Object)63 methods are primarily designed for design-time
tool support, but must handle invocation at runtime as well. The java.beans.Beans.isDesignTime()
method can be used to determine if the resolver is being consulted at design-time or runtime.

Since: JSP 2.1

See Also: CompositeELResolver44, ELContext.getELResolver()53

Fields

2.10.3 RESOLVABLE_AT_DESIGN_TIME

public static final java.lang.String RESOLVABLE_AT_DESIGN_TIME

Member Summary

Fields
static

java.lang.String
RESOLVABLE_AT_DESIGN_TIME62

static
java.lang.String

TYPE63

Constructors
ELResolver()63

Methods
abstract

java.lang.Class
getCommonPropertyType(ELContext context, java.lang.Object
base)63

abstract
java.util.Iterator

getFeatureDescriptors(ELContext context, java.lang.Object
base)63

abstract
java.lang.Class

getType(ELContext context, java.lang.Object base,
java.lang.Object property)64

abstract
java.lang.Object

getValue(ELContext context, java.lang.Object base,
java.lang.Object property)65

 java.lang.Object invoke(ELContext context, java.lang.Object base,
java.lang.Object method, java.lang.Class[] paramTypes,
java.lang.Object[] params)65

abstract boolean isReadOnly(ELContext context, java.lang.Object base,
java.lang.Object property)66

abstract void setValue(ELContext context, java.lang.Object base,
java.lang.Object property, java.lang.Object value)66

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
62 Expression Language Specification • December 10, 2009

javax.el ELResolver

TYPE
The attribute name of the named attribute in the FeatureDescriptor that specifies whether the
variable or property can be resolved at runtime.

2.10.4 TYPE

public static final java.lang.String TYPE

The attribute name of the named attribute in the FeatureDescriptor that specifies the runtime type of
the variable or property.

Constructors

2.10.5 ELResolver()

public ELResolver()

Methods

2.10.6 getCommonPropertyType(ELContext, Object)

public abstract java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

Returns the most general type that this resolver accepts for the property argument, given a base object.
One use for this method is to assist tools in auto-completion.

This assists tools in auto-completion and also provides a way to express that the resolver accepts a primitive
value, such as an integer index into an array. For example, the ArrayELResolver29 will accept any int
as a property, so the return value would be Integer.class.

Parameters:
context - The context of this evaluation.

base - The base object to return the most general property type for, or null to enumerate the set of
top-level variables that this resolver can evaluate.

Returns: null if this ELResolver does not know how to handle the given base object; otherwise
Object.class if any type of property is accepted; otherwise the most general property type
accepted for the given base.

2.10.7 getFeatureDescriptors(ELContext, Object)

public abstract java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

Returns information about the set of variables or properties that can be resolved for the given base object.
One use for this method is to assist tools in auto-completion.

If the base parameter is null, the resolver must enumerate the list of top-level variables it can resolve.

The Iterator returned must contain zero or more instances of
java.beans.FeatureDescriptor, in no guaranteed order. In the case of primitive types such as
int, the value null must be returned. This is to prevent the useless iteration through all possible primitive
values. A return value of null indicates that this resolver does not handle the given base object or that the
javax.el ELResolver 63

ELResolver javax.el

getType(ELContext, Object, Object)
results are too complex to represent with this method and the
getCommonPropertyType(ELContext, Object)63 method should be used instead.

Each FeatureDescriptor will contain information about a single variable or property. In addition to
the standard properties, the FeatureDescriptor must have two named attributes (as set by the
setValue method):

• TYPE63- The value of this named attribute must be an instance of java.lang.Class and specify

the runtime type of the variable or property.

• RESOLVABLE_AT_DESIGN_TIME62- The value of this named attribute must be an instance of

java.lang.Boolean and indicates whether it is safe to attempt to resolve this property at design-
time. For instance, it may be unsafe to attempt a resolution at design time if the ELResolver needs
access to a resource that is only available at runtime and no acceptable simulated value can be
provided.

The caller should be aware that the Iterator returned might iterate through a very large or even infinitely
large set of properties. Care should be taken by the caller to not get stuck in an infinite loop.

This is a “best-effort” list. Not all ELResolvers will return completely accurate results, but all must be
callable at both design-time and runtime (i.e. whether or not Beans.isDesignTime() returns true),
without causing errors.

The propertyResolved property of the ELContext is not relevant to this method. The results of all
ELResolvers are concatenated in the case of composite resolvers.

Parameters:
context - The context of this evaluation.

base - The base object whose set of valid properties is to be enumerated, or null to enumerate the set
of top-level variables that this resolver can evaluate.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor
objects, or null if this resolver does not handle the given base object or that the results are too
complex to represent with this method

See Also: java.beans.FeatureDescriptor

2.10.8 getType(ELContext, Object, Object)

public abstract java.lang.Class getType(javax.el.ELContext52 context,

java.lang.Object base, java.lang.Object property)

For a given base and property, attempts to identify the most general type that is acceptable for an
object to be passed as the value parameter in a future call to the setValue(ELContext, Object,
Object, Object)66 method.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

This is not always the same as getValue().getClass(). For example, in the case of an
ArrayELResolver29, the getType method will return the element type of the array, which might be a
superclass of the type of the actual element that is currently in the specified array element.

Parameters:
context - The context of this evaluation.
64 Expression Language Specification • December 10, 2009

javax.el ELResolver

getValue(ELContext, Object, Object)
base - The base object whose property value is to be analyzed, or null to analyze a top-level
variable.

property - The property or variable to return the acceptable type for.

Returns: If the propertyResolved property of ELContext was set to true, then the most general
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.10.9 getValue(ELContext, Object, Object)

public abstract java.lang.Object getValue(javax.el.ELContext52 context,

java.lang.Object base, java.lang.Object property)

Attempts to resolve the given property object on the given base object.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be returned, or null to resolve a top-level variable.

property - The property or variable to be resolved.

Returns: If the propertyResolved property of ELContext was set to true, then the result of the
variable or property resolution; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.10.10 invoke(ELContext, Object, Object, Class[], Object[])

public java.lang.Object invoke(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object method, java.lang.Class[] paramTypes,

java.lang.Object[] params)

Attemps to resolve and invoke the given method on the given base object.

If this resolver handles the given (base, method) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

A default implementation is provided that returns null so that existing classes that extend ELResolver can
continue to function.
javax.el ELResolver 65

ELResolver javax.el

isReadOnly(ELContext, Object, Object)
Parameters:
context - The context of this evaluation.

base - The bean on which to invoke the method

method - The simple name of the method to invoke. Will be coerced to a String.

paramTypes - An array of Class objects identifying the method’s formal parameter types, in declared
order. Use an empty array if the method has no parameters. Can be null, in which case the method’s
formal parameter types are assumed to be unknown.

params - The parameters to pass to the method, or null if no parameters.

Returns: The result of the method invocation (null if the method has a void return type).

Throws:
MethodNotFoundException92 - if no suitable method can be found.

ELException59 - if an exception was thrown while performing (base, method) resolution. The
thrown exception must be included as the cause property of this exception, if available. If the exception
thrown is an InvocationTargetException, extract its cause and pass it to the
ELException constructor.

Since: EL 2.2

2.10.11 isReadOnly(ELContext, Object, Object)

public abstract boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

For a given base and property, attempts to determine whether a call to setValue(ELContext,
Object, Object, Object)66 will always fail.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller should ignore the return value.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level
variable.

property - The property or variable to return the read-only status for.

Returns: If the propertyResolved property of ELContext was set to true, then true if the
property is read-only or false if not; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.10.12 setValue(ELContext, Object, Object, Object)

public abstract void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object value)
66 Expression Language Specification • December 10, 2009

javax.el ELResolver

setValue(ELContext, Object, Object, Object)
Attempts to set the value of the given property object on the given base object.

If this resolver handles the given (base, property) pair, the propertyResolved property of the
ELContext object must be set to true by the resolver, before returning. If this property is not true after
this method is called, the caller can safely assume no value has been set.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be set, or null to set a top-level variable.

property - The property or variable to be set.

value - The value to set the property or variable to.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property does not exist.

PropertyNotWritableException96 - if the given (base, property) pair is handled by this
ELResolver but the specified variable or property is not writable.

ELException59 - if an exception was thrown while attempting to set the property or variable. The
thrown exception must be included as the cause property of this exception, if available.
javax.el ELResolver 67

Expression javax.el

setValue(ELContext, Object, Object, Object)
2.11 javax.el

Expression
2.11.1 Declaration
public abstract class Expression implements java.io.Serializable

java.lang.Object
|
+--javax.el.Expression

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: MethodExpression87, ValueExpression102

2.11.2 Description
Base class for the expression subclasses ValueExpression102 and MethodExpression87,
implementing characterstics common to both.

All expressions must implement the equals() and hashCode() methods so that two expressions can be
compared for equality. They are redefined abstract in this class to force their implementation in subclasses.

All expressions must also be Serializable so that they can be saved and restored.

Expressions are also designed to be immutable so that only one instance needs to be created for any given
expression String / FunctionMapper75. This allows a container to pre-create expressions and not have to re-
parse them each time they are evaluated.

Since: JSP 2.1

Member Summary

Constructors
Expression()69

Methods
abstract boolean equals(java.lang.Object obj)69

abstract
java.lang.String

getExpressionString()69

abstract int hashCode()69
abstract boolean isLiteralText()70

Inherited Member Summary

Methods inherited from class Object

clone(), finalize(), getClass(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)
68 Expression Language Specification • December 10, 2009

javax.el Expression

Expression()
Constructors

2.11.3 Expression()

public Expression()

Methods

2.11.4 equals(Object)

public abstract boolean equals(java.lang.Object obj)

Determines whether the specified object is equal to this Expression.

The result is true if and only if the argument is not null, is an Expression object that is the of the
same type (ValueExpression or MethodExpression), and has an identical parsed representation.

Note that two expressions can be equal if their expression Strings are different. For example,
${fn1:foo()} and ${fn2:foo()} are equal if their corresponding FunctionMappers mapped
fn1:foo and fn2:foo to the same method.

Overrides: equals in class Object

Parameters:
obj - the Object to test for equality.

Returns: true if obj equals this Expression; false otherwise.

See Also: java.util.Hashtable, java.lang.Object.equals(Object)

2.11.5 getExpressionString()

public abstract java.lang.String getExpressionString()

Returns the original String used to create this Expression, unmodified.

This is used for debugging purposes but also for the purposes of comparison (e.g. to ensure the expression
in a configuration file has not changed).

This method does not provide sufficient information to re-create an expression. Two different expressions
can have exactly the same expression string but different function mappings. Serialization should be used to
save and restore the state of an Expression.

Returns: The original expression String.

2.11.6 hashCode()

public abstract int hashCode()

Returns the hash code for this Expression.

See the note in the equals(Object)69 method on how two expressions can be equal if their expression
Strings are different. Recall that if two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce the same integer result.
Implementations must take special note and implement hashCode correctly.

Overrides: hashCode in class Object
javax.el Expression 69

Expression javax.el

isLiteralText()
Returns: The hash code for this Expression.

See Also: equals(Object)69, java.util.Hashtable, java.lang.Object.hashCode()

2.11.7 isLiteralText()

public abstract boolean isLiteralText()

Returns whether this expression was created from only literal text.

This method must return true if and only if the expression string this expression was created from
contained no unescaped EL delimeters (${...} or #{...}).

Returns: true if this expression was created from only literal text; false otherwise.
70 Expression Language Specification • December 10, 2009

javax.el ExpressionFactory

ExpressionFactory()
2.12 javax.el

ExpressionFactory
2.12.1 Declaration
public abstract class ExpressionFactory

java.lang.Object
|
+--javax.el.ExpressionFactory

Constructors

2.12.2 ExpressionFactory()

public ExpressionFactory()

Member Summary

Constructors
ExpressionFactory()71

Methods
abstract

java.lang.Object
coerceToType(java.lang.Object obj, java.lang.Class
targetType)72

abstract
MethodExpression

createMethodExpression(ELContext context, java.lang.String
expression, java.lang.Class expectedReturnType,
java.lang.Class[] expectedParamTypes)72

abstract
ValueExpression

createValueExpression(ELContext context, java.lang.String
expression, java.lang.Class expectedType)73

abstract
ValueExpression

createValueExpression(java.lang.Object instance,
java.lang.Class expectedType)73

static
ExpressionFactory

newInstance()74

static
ExpressionFactory

newInstance(java.util.Properties properties)74

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
javax.el ExpressionFactory 71

ExpressionFactory javax.el

coerceToType(Object, Class)
Methods

2.12.3 coerceToType(Object, Class)

public abstract java.lang.Object coerceToType(java.lang.Object obj,

java.lang.Class targetType)

Coerces an object to a specific type according to the EL type conversion rules.

An ELException is thrown if an error results from applying the conversion rules.

Parameters:
obj - The object to coerce.

targetType - The target type for the coercion.

Throws:
ELException59 - thrown if an error results from applying the conversion rules.

2.12.4 createMethodExpression(ELContext, String, Class, Class[])

public abstract javax.el.MethodExpression87 createMethodExpression(javax.el.ELContext52
context, java.lang.String expression, java.lang.Class expectedReturnType,

java.lang.Class[] expectedParamTypes)

Parses an expression into a MethodExpression87 for later evaluation. Use this method for expressions
that refer to methods.

If the expression is a String literal, a MethodExpression is created, which when invoked, returns the
String literal, coerced to expectedReturnType. An ELException is thrown if expectedReturnType is void or
if the coercion of the String literal to the expectedReturnType yields an error (see Section “1.16 Type
Conversion”).

This method should perform syntactic validation of the expression. If in doing so it detects errors, it should
raise an ELException.

Parameters:
context - The EL context used to parse the expression. The FunctionMapper and
VariableMapper stored in the ELContext are used to resolve functions and variables found in the
expression. They can be null, in which case functions or variables are not supported for this
expression. The object returned must invoke the same functions and access the same variable mappings
regardless of whether the mappings in the provided FunctionMapper and VariableMapper
instances change between calling ExpressionFactory.createMethodExpression() and
any method on MethodExpression.

Note that within the EL, the ${} and #{} syntaxes are treated identically. This includes the use of
VariableMapper and FunctionMapper at expression creation time. Each is invoked if not null,
independent of whether the #{} or ${} syntax is used for the expression.

expression - The expression to parse

expectedReturnType - The expected return type for the method to be found. After evaluating the
expression, the MethodExpression must check that the return type of the actual method matches
this type. Passing in a value of null indicates the caller does not care what the return type is, and the
check is disabled.

expectedParamTypes - The expected parameter types for the method to be found. Must be an
array with no elements if there are no parameters expected. It is illegal to pass null, unless the method
72 Expression Language Specification • December 10, 2009

javax.el ExpressionFactory

createValueExpression(ELContext, String, Class)
is specified with arugments in the EL expression, in which case these arguments are used for method
selection, and this parameter is ignored.

Returns: The parsed expression

Throws:
ELException59 - Thrown if there are syntactical errors in the provided expression.

java.lang.NullPointerException - if paramTypes is null.

2.12.5 createValueExpression(ELContext, String, Class)

public abstract javax.el.ValueExpression102 createValueExpression(javax.el.ELContext52
context, java.lang.String expression, java.lang.Class expectedType)

Parses an expression into a ValueExpression102 for later evaluation. Use this method for expressions
that refer to values.

This method should perform syntactic validation of the expression. If in doing so it detects errors, it should
raise an ELException.

Parameters:
context - The EL context used to parse the expression. The FunctionMapper and
VariableMapper stored in the ELContext are used to resolve functions and variables found in the
expression. They can be null, in which case functions or variables are not supported for this
expression. The object returned must invoke the same functions and access the same variable mappings
regardless of whether the mappings in the provided FunctionMapper and VariableMapper
instances change between calling ExpressionFactory.createValueExpression() and
any method on ValueExpression.

Note that within the EL, the ${} and #{} syntaxes are treated identically. This includes the use of
VariableMapper and FunctionMapper at expression creation time. Each is invoked if not null,
independent of whether the #{} or ${} syntax is used for the expression.

expression - The expression to parse

expectedType - The type the result of the expression will be coerced to after evaluation.

Returns: The parsed expression

Throws:
java.lang.NullPointerException - Thrown if expectedType is null.

ELException59 - Thrown if there are syntactical errors in the provided expression.

2.12.6 createValueExpression(Object, Class)

public abstract javax.el.ValueExpression102 createValueExpression(java.lang.Object

instance, java.lang.Class expectedType)

Creates a ValueExpression that wraps an object instance. This method can be used to pass any object as a
ValueExpression. The wrapper ValueExpression is read only, and returns the wrapped object via its
getValue() method, optionally coerced.

Parameters:
instance - The object instance to be wrapped.

expectedType - The type the result of the expression will be coerced to after evaluation. There will
be no coercion if it is Object.class,
javax.el ExpressionFactory 73

ExpressionFactory javax.el

newInstance()
Throws:
java.lang.NullPointerException - Thrown if expectedType is null.

2.12.7 newInstance()

public static javax.el.ExpressionFactory71 newInstance()

Creates a new instance of a ExpressionFactory. This method uses the following ordered lookup
procedure to determine the ExpressionFactory implementation class to load:

• Use the Services API (as detailed in the JAR specification). If a resource with the name of META-
INF/services/javax.el.ExpressionFactory exists, then its first line, if present, is used
as the UTF-8 encoded name of the implementation class.

• Use the properties file “lib/el.properties” in the JRE directory. If this file exists and it is readable by the
java.util.Properties.load(InputStream)method, and it contains an entry whose key is
“javax.el.ExpressionFactory”, then the value of that entry is used as the name of the implementation
class.

• Use the javax.el.ExpressionFactory system property. If a system property with this name is
defined, then its value is used as the name of the implementation class.

• Use a platform default implementation.

2.12.8 newInstance(Properties)

public static javax.el.ExpressionFactory71 newInstance(java.util.Properties properties)

Create a new instance of a ExpressionFactory, with optional properties. This method uses the same
lookup procedure as the one used in newInstance().

If the argument properties is not null, and if the implementation contains a constructor with a single
parameter of type java.util.Properties, then the constructor is used to create the instance.

Properties are optional and can be ignored by an implementation.

The name of a property should start with “javax.el.”

The following are some suggested names for properties.

• javax.el.cacheSize

Parameters:
properties - Properties passed to the implementation. If null, then no properties.
74 Expression Language Specification • December 10, 2009

javax.el FunctionMapper

FunctionMapper()
2.13 javax.el

FunctionMapper
2.13.1 Declaration
public abstract class FunctionMapper

java.lang.Object
|
+--javax.el.FunctionMapper

2.13.2 Description
The interface to a map between EL function names and methods.

A FunctionMapper maps ${prefix:name()} style functions to a static method that can execute that
function.

Since: JSP 2.1

Constructors

2.13.3 FunctionMapper()

public FunctionMapper()

Member Summary

Constructors
FunctionMapper()75

Methods
abstract

java.lang.reflect.Meth
od

resolveFunction(java.lang.String prefix, java.lang.String
localName)76

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
javax.el FunctionMapper 75

FunctionMapper javax.el

resolveFunction(String, String)
Methods

2.13.4 resolveFunction(String, String)

public abstract java.lang.reflect.Method resolveFunction(java.lang.String prefix,

java.lang.String localName)

Resolves the specified prefix and local name into a java.lang.Method.

Returns null if no function could be found that matches the given prefix and local name.

Parameters:
prefix - the prefix of the function, or “” if no prefix. For example, “fn” in ${fn:method()}, or
“” in ${method()}.

localName - the short name of the function. For example, “method” in ${fn:method()}.

Returns: the static method to invoke, or null if no match was found.
76 Expression Language Specification • December 10, 2009

javax.el ListELResolver

resolveFunction(String, String)
2.14 javax.el

ListELResolver
2.14.1 Declaration
public class ListELResolver extends ELResolver61

java.lang.Object
|
+--javax.el.ELResolver61

|
+--javax.el.ListELResolver

2.14.2 Description
Defines property resolution behavior on instances of java.util.List.

This resolver handles base objects of type java.util.List. It accepts any object as a property and coerces
that object into an integer index into the list. The resulting value is the value in the list at that index.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true
and setValue(ELContext, Object, Object, Object)81 will always throw
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver44s, to define rich semantics for
evaluating an expression. See the javadocs for ELResolver61 for details.

Since: JSP 2.1

See Also: CompositeELResolver44, ELResolver61, java.util.List

Member Summary

Constructors
ListELResolver()78
ListELResolver(boolean isReadOnly)78

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object

base)78
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object

base)79
 java.lang.Class getType(ELContext context, java.lang.Object base,

java.lang.Object property)79
 java.lang.Object getValue(ELContext context, java.lang.Object base,

java.lang.Object property)79
 boolean isReadOnly(ELContext context, java.lang.Object base,

java.lang.Object property)80
 void setValue(ELContext context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)81
javax.el ListELResolver 77

ListELResolver javax.el

ListELResolver()
Constructors

2.14.3 ListELResolver()

public ListELResolver()

Creates a new read/write ListELResolver.

2.14.4 ListELResolver(boolean)

public ListELResolver(boolean isReadOnly)

Creates a new ListELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify lists; false otherwise.

Methods

2.14.5 getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is a list, returns the most general type that this resolver accepts for the property
argument. Otherwise, returns null.

Assuming the base is a List, this method will always return Integer.class. This is because Lists
accept integers as their index.

Overrides: getCommonPropertyType63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The list to analyze. Only bases of type List are handled by this resolver.

Returns: null if base is not a List; otherwise Integer.class.

Inherited Member Summary

Fields inherited from class ELResolver61

RESOLVABLE_AT_DESIGN_TIME62, TYPE63

Methods inherited from class ELResolver61

invoke(ELContext, Object, Object, Class[], Object[])65

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
78 Expression Language Specification • December 10, 2009

javax.el ListELResolver

getFeatureDescriptors(ELContext, Object)
2.14.6 getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

Always returns null, since there is no reason to iterate through set set of all integers.

The getCommonPropertyType(ELContext, Object)78 method returns sufficient information
about what properties this resolver accepts.

Overrides: getFeatureDescriptors63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The list. Only bases of type List are handled by this resolver.

Returns: null.

2.14.7 getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a list, returns the most general acceptable type for a value in this list.

If the base is a List, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller should
ignore the return value.

Assuming the base is a List, this method will always return Object.class. This is because Lists
accept any object as an element.

Overrides: getType64 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The list to analyze. Only bases of type List are handled by this resolver.

property - The index of the element in the list to return the acceptable type for. Will be coerced into
an integer, but otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then the most general
acceptable type; otherwise undefined.

Throws:
PropertyNotFoundException94 - if the given index is out of bounds for this list.

java.lang.NullPointerException - if context is null

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.14.8 getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a list, returns the value at the given index. The index is specified by the property
argument, and coerced into an integer. If the coercion could not be performed, an
IllegalArgumentException is thrown. If the index is out of bounds, null is returned.
javax.el ListELResolver 79

ListELResolver javax.el

isReadOnly(ELContext, Object, Object)
If the base is a List, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller should
ignore the return value.

Overrides: getValue65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The list to be analyzed. Only bases of type List are handled by this resolver.

property - The index of the value to be returned. Will be coerced into an integer.

Returns: If the propertyResolved property of ELContext was set to true, then the value at the
given index or null if the index was out of bounds. Otherwise, undefined.

Throws:
java.lang.IllegalArgumentException - if the property could not be coerced into an
integer.

java.lang.NullPointerException - if context is null.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.14.9 isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a list, returns whether a call to setValue(ELContext, Object, Object,
Object)81 will always fail.

If the base is a List, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller should
ignore the return value.

If this resolver was constructed in read-only mode, this method will always return true.

If a List was created using java.util.Collections.unmodifiableList(List), this
method must return true. Unfortunately, there is no Collections API method to detect this. However, an
implementation can create a prototype unmodifiable List and query its runtime type to see if it matches
the runtime type of the base object as a workaround.

Overrides: isReadOnly66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The list to analyze. Only bases of type List are handled by this resolver.

property - The index of the element in the list to return the acceptable type for. Will be coerced into
an integer, but otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling
the setValue method will always fail or false if it is possible that such a call may succeed;
otherwise undefined.

Throws:
PropertyNotFoundException94 - if the given index is out of bounds for this list.

java.lang.NullPointerException - if context is null
80 Expression Language Specification • December 10, 2009

javax.el ListELResolver

setValue(ELContext, Object, Object, Object)
ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.14.10 setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

If the base object is a list, attempts to set the value at the given index with the given value. The index is
specified by the property argument, and coerced into an integer. If the coercion could not be performed,
an IllegalArgumentException is thrown. If the index is out of bounds, a
PropertyNotFoundException is thrown.

If the base is a List, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller can
safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw
PropertyNotWritableException.

If a List was created using java.util.Collections.unmodifiableList(List), this
method must throw PropertyNotWritableException. Unfortunately, there is no Collections API
method to detect this. However, an implementation can create a prototype unmodifiable List and query its
runtime type to see if it matches the runtime type of the base object as a workaround.

Overrides: setValue66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The list to be modified. Only bases of type List are handled by this resolver.

property - The index of the value to be set. Will be coerced into an integer.

val - The value to be set at the given index.

Throws:
java.lang.ClassCastException - if the class of the specified element prevents it from being
added to this list.

java.lang.NullPointerException - if context is null, or if the value is null and this
List does not support null elements.

java.lang.IllegalArgumentException - if the property could not be coerced into an
integer, or if some aspect of the specified element prevents it from being added to this list.

PropertyNotWritableException96 - if this resolver was constructed in read-only mode, or if
the set operation is not supported by the underlying list.

PropertyNotFoundException94 - if the given index is out of bounds for this list.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.
javax.el ListELResolver 81

MapELResolver javax.el

setValue(ELContext, Object, Object, Object)
2.15 javax.el

MapELResolver
2.15.1 Declaration
public class MapELResolver extends ELResolver61

java.lang.Object
|
+--javax.el.ELResolver61

|
+--javax.el.MapELResolver

2.15.2 Description
Defines property resolution behavior on instances of java.util.Map.

This resolver handles base objects of type java.util.Map. It accepts any object as a property and uses that
object as a key in the map. The resulting value is the value in the map that is associated with that key.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true
and setValue(ELContext, Object, Object, Object)86 will always throw
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver44s, to define rich semantics for
evaluating an expression. See the javadocs for ELResolver61 for details.

Since: JSP 2.1

See Also: CompositeELResolver44, ELResolver61, java.util.Map

Member Summary

Constructors
MapELResolver()83
MapELResolver(boolean isReadOnly)83

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object

base)83
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object

base)84
 java.lang.Class getType(ELContext context, java.lang.Object base,

java.lang.Object property)84
 java.lang.Object getValue(ELContext context, java.lang.Object base,

java.lang.Object property)85
 boolean isReadOnly(ELContext context, java.lang.Object base,

java.lang.Object property)85
 void setValue(ELContext context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)86
82 Expression Language Specification • December 10, 2009

javax.el MapELResolver

MapELResolver()
Constructors

2.15.3 MapELResolver()

public MapELResolver()

Creates a new read/write MapELResolver.

2.15.4 MapELResolver(boolean)

public MapELResolver(boolean isReadOnly)

Creates a new MapELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify maps; false otherwise.

Methods

2.15.5 getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is a map, returns the most general type that this resolver accepts for the property
argument. Otherwise, returns null.

Assuming the base is a Map, this method will always return Object.class. This is because Maps accept
any object as a key.

Overrides: getCommonPropertyType63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The map to analyze. Only bases of type Map are handled by this resolver.

Returns: null if base is not a Map; otherwise Object.class.

Inherited Member Summary

Fields inherited from class ELResolver61

RESOLVABLE_AT_DESIGN_TIME62, TYPE63

Methods inherited from class ELResolver61

invoke(ELContext, Object, Object, Class[], Object[])65

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
javax.el MapELResolver 83

MapELResolver javax.el

getFeatureDescriptors(ELContext, Object)
2.15.6 getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is a map, returns an Iterator containing the set of keys available in the Map.
Otherwise, returns null.

The Iterator returned must contain zero or more instances of
java.beans.FeatureDescriptor. Each info object contains information about a key in the Map,
and is initialized as follows:

displayName - The return value of calling the toString method on this key, or “null” if the key is
null. name - Same as displayName property. shortDescription - Empty string expert - false hidden -
false preferred - true

In addition, the following named attributes must be set in the returned FeatureDescriptors:

ELResolver.TYPE63 - The return value of calling the getClass() method on this key, or null if
the key is null. ELResolver.RESOLVABLE_AT_DESIGN_TIME62 - true

Overrides: getFeatureDescriptors63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The map whose keys are to be iterated over. Only bases of type Map are handled by this
resolver.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor
objects, each representing a key in this map, or null if the base object is not a map.

2.15.7 getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a map, returns the most general acceptable type for a value in this map.

If the base is a Map, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller should
ignore the return value.

Assuming the base is a Map, this method will always return Object.class. This is because Maps accept
any object as the value for a given key.

Overrides: getType64 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The map to analyze. Only bases of type Map are handled by this resolver.

property - The key to return the acceptable type for. Ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then the most general
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.
84 Expression Language Specification • December 10, 2009

javax.el MapELResolver

getValue(ELContext, Object, Object)
2.15.8 getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a map, returns the value associated with the given key, as specified by the property
argument. If the key was not found, null is returned.

If the base is a Map, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller should
ignore the return value.

Just as in java.util.Map.get(Object), just because null is returned doesn’t mean there is no
mapping for the key; it’s also possible that the Map explicitly maps the key to null.

Overrides: getValue65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The map to be analyzed. Only bases of type Map are handled by this resolver.

property - The key whose associated value is to be returned.

Returns: If the propertyResolved property of ELContext was set to true, then the value
associated with the given key or null if the key was not found. Otherwise, undefined.

Throws:
java.lang.ClassCastException - if the key is of an inappropriate type for this map
(optionally thrown by the underlying Map).

java.lang.NullPointerException - if context is null, or if the key is null and this map
does not permit null keys (the latter is optionally thrown by the underlying Map).

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.15.9 isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is a map, returns whether a call to setValue(ELContext, Object, Object,
Object)86 will always fail.

If the base is a Map, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller should
ignore the return value.

If this resolver was constructed in read-only mode, this method will always return true.

If a Map was created using java.util.Collections.unmodifiableMap(Map), this method
must return true. Unfortunately, there is no Collections API method to detect this. However, an
implementation can create a prototype unmodifiable Map and query its runtime type to see if it matches the
runtime type of the base object as a workaround.

Overrides: isReadOnly66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The map to analyze. Only bases of type Map are handled by this resolver.
javax.el MapELResolver 85

MapELResolver javax.el

setValue(ELContext, Object, Object, Object)
property - The key to return the read-only status for. Ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling
the setValue method will always fail or false if it is possible that such a call may succeed;
otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.15.10 setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object val)

If the base object is a map, attempts to set the value associated with the given key, as specified by the
property argument.

If the base is a Map, the propertyResolved property of the ELContext object must be set to true
by this resolver, before returning. If this property is not true after this method is called, the caller can
safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw
PropertyNotWritableException.

If a Map was created using java.util.Collections.unmodifiableMap(Map), this method
must throw PropertyNotWritableException. Unfortunately, there is no Collections API method
to detect this. However, an implementation can create a prototype unmodifiable Map and query its runtime
type to see if it matches the runtime type of the base object as a workaround.

Overrides: setValue66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The map to be modified. Only bases of type Map are handled by this resolver.

property - The key with which the specified value is to be associated.

val - The value to be associated with the specified key.

Throws:
java.lang.ClassCastException - if the class of the specified key or value prevents it from
being stored in this map.

java.lang.NullPointerException - if context is null, or if this map does not permit null
keys or values, and the specified key or value is null.

java.lang.IllegalArgumentException - if some aspect of this key or value prevents it
from being stored in this map.

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

PropertyNotWritableException96 - if this resolver was constructed in read-only mode, or if
the put operation is not supported by the underlying map.
86 Expression Language Specification • December 10, 2009

javax.el MethodExpression

setValue(ELContext, Object, Object, Object)
2.16 javax.el

MethodExpression
2.16.1 Declaration
public abstract class MethodExpression extends Expression68

java.lang.Object
|
+--javax.el.Expression68

|
+--javax.el.MethodExpression

All Implemented Interfaces: java.io.Serializable

2.16.2 Description
An Expression that refers to a method on an object.

The ExpressionFactory.createMethodExpression(ELContext, String, Class,
Class[])72 method can be used to parse an expression string and return a concrete instance of
MethodExpression that encapsulates the parsed expression. The FunctionMapper75 is used at parse
time, not evaluation time, so one is not needed to evaluate an expression using this class. However, the
ELContext52 is needed at evaluation time.

The getMethodInfo(ELContext)88 and invoke(ELContext, Object[])88 methods will
evaluate the expression each time they are called. The ELResolver61 in the ELContext is used to resolve
the top-level variables and to determine the behavior of the . and [] operators. For any of the two methods, the
ELResolver.getValue(ELContext, Object, Object)65 method is used to resolve all properties
up to but excluding the last one. This provides the base object on which the method appears. If the base
object is null, a PropertyNotFoundException must be thrown. At the last resolution, the final
property is then coerced to a String, which provides the name of the method to be found. A method
matching the name and expected parameters provided at parse time is found and it is either queried or invoked
(depending on the method called on this MethodExpression).

See the notes about comparison, serialization and immutability in the Expression68 javadocs.

Since: JSP 2.1

See Also: ELResolver61, Expression68, ExpressionFactory71

Member Summary

Constructors
MethodExpression()88

Methods
abstract MethodInfo getMethodInfo(ELContext context)88

abstract
java.lang.Object

invoke(ELContext context, java.lang.Object[] params)88

 boolean isParmetersProvided()89
javax.el MethodExpression 87

MethodExpression javax.el

MethodExpression()
Constructors

2.16.3 MethodExpression()

public MethodExpression()

Methods

2.16.4 getMethodInfo(ELContext)

public abstract javax.el.MethodInfo90 getMethodInfo(javax.el.ELContext52 context)

Evaluates the expression relative to the provided context, and returns information about the actual
referenced method.

Parameters:
context - The context of this evaluation

Returns: an instance of MethodInfo containing information about the method the expression evaluated
to.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if one of the property resolutions failed because a specified
variable or property does not exist or is not readable.

MethodNotFoundException92 - if no suitable method can be found.

ELException59 - if an exception was thrown while performing property or variable resolution. The
thrown exception must be included as the cause property of this exception, if available.

2.16.5 invoke(ELContext, Object[])

public abstract java.lang.Object invoke(javax.el.ELContext52 context,

java.lang.Object[] params)

If a String literal is specified as the expression, returns the String literal coerced to the expected return type
of the method signature. An ELException is thrown if expectedReturnType is void or if the
coercion of the String literal to the expectedReturnType yields an error (see Section “1.18 Type
Conversion” of the EL specification). If not a String literal, evaluates the expression relative to the provided
context, invokes the method that was found using the supplied parameters, and returns the result of the

Inherited Member Summary

Methods inherited from class Expression68

equals(Object)69, getExpressionString()69, hashCode()69, isLiteralText()70

Methods inherited from class Object

clone(), finalize(), getClass(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)
88 Expression Language Specification • December 10, 2009

javax.el MethodExpression

isParmetersProvided()
method invocation. Any parameters passed to this method is ignored if isLiteralText() or
isParametersProvided() is true.

Parameters:
context - The context of this evaluation.

params - The parameters to pass to the method, or null if no parameters.

Returns: the result of the method invocation (null if the method has a void return type).

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException94 - if one of the property resolutions failed because a specified
variable or property does not exist or is not readable.

MethodNotFoundException92 - if no suitable method can be found.

ELException59 - if a String literal is specified and expectedReturnType of the MethodExpression is
void or if the coercion of the String literal to the expectedReturnType yields an error (see Section “1.18
Type Conversion”).

ELException59 - if an exception was thrown while performing property or variable resolution. The
thrown exception must be included as the cause property of this exception, if available. If the exception
thrown is an InvocationTargetException, extract its cause and pass it to the
ELException constructor.

2.16.6 isParmetersProvided()

public boolean isParmetersProvided()

Return whether this MethodExpression was created with parameters.

This method must return true if and only if parameters are specified in the EL, using the expr-a.expr-b(...)
syntax.

Returns: true if the MethodExpression was created with parameters, false otherwise.

Since: EL 2.2
javax.el MethodExpression 89

MethodInfo javax.el

MethodInfo(String, Class, Class[])
2.17 javax.el

MethodInfo
2.17.1 Declaration
public class MethodInfo

java.lang.Object
|
+--javax.el.MethodInfo

2.17.2 Description
Holds information about a method that a MethodExpression87 evaluated to.

Since: JSP 2.1

Constructors

2.17.3 MethodInfo(String, Class, Class[])

public MethodInfo(java.lang.String name, java.lang.Class returnType,

java.lang.Class[] paramTypes)

Creates a new instance of MethodInfo with the given information.

Parameters:
name - The name of the method

returnType - The return type of the method

Member Summary

Constructors
MethodInfo(java.lang.String name, java.lang.Class returnType,
java.lang.Class[] paramTypes)90

Methods
 java.lang.String getName()91
 java.lang.Class[] getParamTypes()91
 java.lang.Class getReturnType()91

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
90 Expression Language Specification • December 10, 2009

javax.el MethodInfo

getName()
paramTypes - The types of each of the method’s parameters

Methods

2.17.4 getName()

public java.lang.String getName()

Returns the name of the method

Returns: the name of the method

2.17.5 getParamTypes()

public java.lang.Class[] getParamTypes()

Returns the parameter types of the method

Returns: the parameter types of the method

2.17.6 getReturnType()

public java.lang.Class getReturnType()

Returns the return type of the method

Returns: the return type of the method
javax.el MethodInfo 91

MethodNotFoundException javax.el

getReturnType()
2.18 javax.el

MethodNotFoundException
2.18.1 Declaration
public class MethodNotFoundException extends ELException59

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException59

|
+--javax.el.MethodNotFoundException

All Implemented Interfaces: java.io.Serializable

2.18.2 Description
Thrown when a method could not be found while evaluating a MethodExpression87.

Since: JSP 2.1

See Also: MethodExpression87

Member Summary

Constructors
MethodNotFoundException()93
MethodNotFoundException(java.lang.String message)93
MethodNotFoundException(java.lang.String pMessage,
java.lang.Throwable pRootCause)93
MethodNotFoundException(java.lang.Throwable exception)93

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
92 Expression Language Specification • December 10, 2009

javax.el MethodNotFoundException

MethodNotFoundException()
Constructors

2.18.3 MethodNotFoundException()

public MethodNotFoundException()

Creates a MethodNotFoundException with no detail message.

2.18.4 MethodNotFoundException(String)

public MethodNotFoundException(java.lang.String message)

Creates a MethodNotFoundException with the provided detail message.

Parameters:
message - the detail message

2.18.5 MethodNotFoundException(Throwable)

public MethodNotFoundException(java.lang.Throwable exception)

Creates a MethodNotFoundException with the given root cause.

Parameters:
exception - the originating cause of this exception

2.18.6 MethodNotFoundException(String, Throwable)

public MethodNotFoundException(java.lang.String pMessage,

java.lang.Throwable pRootCause)

Creates a MethodNotFoundException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
javax.el MethodNotFoundException 93

PropertyNotFoundException javax.el

MethodNotFoundException(String, Throwable)
2.19 javax.el

PropertyNotFoundException
2.19.1 Declaration
public class PropertyNotFoundException extends ELException59

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException59

|
+--javax.el.PropertyNotFoundException

All Implemented Interfaces: java.io.Serializable

2.19.2 Description
Thrown when a property could not be found while evaluating a ValueExpression102 or
MethodExpression87.

For example, this could be triggered by an index out of bounds while setting an array value, or by an unreadable
property while getting the value of a JavaBeans property.

Since: JSP 2.1

Member Summary

Constructors
PropertyNotFoundException()95
PropertyNotFoundException(java.lang.String message)95
PropertyNotFoundException(java.lang.String pMessage,
java.lang.Throwable pRootCause)95
PropertyNotFoundException(java.lang.Throwable exception)95

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable
94 Expression Language Specification • December 10, 2009

javax.el PropertyNotFoundException

PropertyNotFoundException()
Constructors

2.19.3 PropertyNotFoundException()

public PropertyNotFoundException()

Creates a PropertyNotFoundException with no detail message.

2.19.4 PropertyNotFoundException(String)

public PropertyNotFoundException(java.lang.String message)

Creates a PropertyNotFoundException with the provided detail message.

Parameters:
message - the detail message

2.19.5 PropertyNotFoundException(Throwable)

public PropertyNotFoundException(java.lang.Throwable exception)

Creates a PropertyNotFoundException with the given root cause.

Parameters:
exception - the originating cause of this exception

2.19.6 PropertyNotFoundException(String, Throwable)

public PropertyNotFoundException(java.lang.String pMessage,

java.lang.Throwable pRootCause)

Creates a PropertyNotFoundException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

Inherited Member Summary
javax.el PropertyNotFoundException 95

PropertyNotWritableException javax.el

PropertyNotFoundException(String, Throwable)
2.20 javax.el

PropertyNotWritableException
2.20.1 Declaration
public class PropertyNotWritableException extends ELException59

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException59

|
+--javax.el.PropertyNotWritableException

All Implemented Interfaces: java.io.Serializable

2.20.2 Description
Thrown when a property could not be written to while setting the value on a ValueExpression102.

For example, this could be triggered by trying to set a map value on an unmodifiable map.

Since: JSP 2.1

Member Summary

Constructors
PropertyNotWritableException()97
PropertyNotWritableException(java.lang.String pMessage)97
PropertyNotWritableException(java.lang.String pMessage,
java.lang.Throwable pRootCause)97
PropertyNotWritableException(java.lang.Throwable exception)97

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(),
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream),
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
96 Expression Language Specification • December 10, 2009

javax.el PropertyNotWritableException

PropertyNotWritableException()
Constructors

2.20.3 PropertyNotWritableException()

public PropertyNotWritableException()

Creates a PropertyNotWritableException with no detail message.

2.20.4 PropertyNotWritableException(String)

public PropertyNotWritableException(java.lang.String pMessage)

Creates a PropertyNotWritableException with the provided detail message.

Parameters:
pMessage - the detail message

2.20.5 PropertyNotWritableException(Throwable)

public PropertyNotWritableException(java.lang.Throwable exception)

Creates a PropertyNotWritableException with the given root cause.

Parameters:
exception - the originating cause of this exception

2.20.6 PropertyNotWritableException(String, Throwable)

public PropertyNotWritableException(java.lang.String pMessage,

java.lang.Throwable pRootCause)

Creates a PropertyNotWritableException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
javax.el PropertyNotWritableException 97

ResourceBundleELResolver javax.el

PropertyNotWritableException(String, Throwable)
2.21 javax.el

ResourceBundleELResolver
2.21.1 Declaration
public class ResourceBundleELResolver extends ELResolver61

java.lang.Object
|
+--javax.el.ELResolver61

|
+--javax.el.ResourceBundleELResolver

2.21.2 Description
Defines property resolution behavior on instances of java.util.ResourceBundle.

This resolver handles base objects of type java.util.ResourceBundle. It accepts any object as a
property and coerces it to a java.lang.String for invoking
java.util.ResourceBundle.getObject(String).

This resolver is read only and will throw a PropertyNotWritableException96 if setValue is called.

ELResolvers are combined together using CompositeELResolver44s, to define rich semantics for
evaluating an expression. See the javadocs for ELResolver61 for details.

Since: JSP 2.1

See Also: CompositeELResolver44, ELResolver61, java.util.ResourceBundle

Member Summary

Constructors
ResourceBundleELResolver()99

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object

base)99
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object

base)99
 java.lang.Class getType(ELContext context, java.lang.Object base,

java.lang.Object property)100
 java.lang.Object getValue(ELContext context, java.lang.Object base,

java.lang.Object property)100
 boolean isReadOnly(ELContext context, java.lang.Object base,

java.lang.Object property)101
 void setValue(ELContext context, java.lang.Object base,

java.lang.Object property, java.lang.Object value)101
98 Expression Language Specification • December 10, 2009

javax.el ResourceBundleELResolver

ResourceBundleELResolver()
Constructors

2.21.3 ResourceBundleELResolver()

public ResourceBundleELResolver()

Methods

2.21.4 getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is a ResourceBundle, returns the most general type that this resolver accepts for the
property argument. Otherwise, returns null.

Assuming the base is a ResourceBundle, this method will always return String.class.

Overrides: getCommonPropertyType63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bundle to analyze. Only bases of type ResourceBundle are handled by this resolver.

Returns: null if base is not a ResourceBundle; otherwise String.class.

2.21.5 getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext52 context,

java.lang.Object base)

If the base object is a ResourceBundle, returns an Iterator containing the set of keys available in the
ResourceBundle. Otherwise, returns null.

The Iterator returned must contain zero or more instances of
java.beans.FeatureDescriptor. Each info object contains information about a key in the
ResourceBundle, and is initialized as follows:

displayName - The String key name - Same as displayName property. shortDescription - Empty string
expert - false hidden - false preferred - true

Inherited Member Summary

Fields inherited from class ELResolver61

RESOLVABLE_AT_DESIGN_TIME62, TYPE63

Methods inherited from class ELResolver61

invoke(ELContext, Object, Object, Class[], Object[])65

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
javax.el ResourceBundleELResolver 99

ResourceBundleELResolver javax.el

getType(ELContext, Object, Object)
In addition, the following named attributes must be set in the returned FeatureDescriptors:

ELResolver.TYPE63 - String.class ELResolver.RESOLVABLE_AT_DESIGN_TIME62 -
true

Overrides: getFeatureDescriptors63 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The bundle whose keys are to be iterated over. Only bases of type ResourceBundle are
handled by this resolver.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor
objects, each representing a key in this bundle, or null if the base object is not a ResourceBundle.

2.21.6 getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is an instance of ResourceBundle, return null, since the resolver is read only.

If the base is ResourceBundle, the propertyResolved property of the ELContext object must
be set to true by this resolver, before returning. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: getType64 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to analyze.

property - The name of the property to analyze.

Returns: If the propertyResolved property of ELContext was set to true, then null; otherwise
undefined.

Throws:
java.lang.NullPointerException - if context is null

2.21.7 getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is an instance of ResourceBundle, the provided property will first be coerced to a
String. The Object returned by getObject on the base ResourceBundle will be returned.

If the base is ResourceBundle, the propertyResolved property of the ELContext object must
be set to true by this resolver, before returning. If this property is not true after this method is called, the
caller should ignore the return value.

Overrides: getValue65 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to analyze.

property - The name of the property to analyze. Will be coerced to a String.
100 Expression Language Specification • December 10, 2009

javax.el ResourceBundleELResolver

isReadOnly(ELContext, Object, Object)
Returns: If the propertyResolved property of ELContext was set to true, then null if property
is null; otherwise the Object for the given key (property coerced to String) from the
ResourceBundle. If no object for the given key can be found, then the String “???” + key +
“???”.

Throws:
java.lang.NullPointerException - if context is null

ELException59 - if an exception was thrown while performing the property or variable resolution.
The thrown exception must be included as the cause property of this exception, if available.

2.21.8 isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property)

If the base object is not null and an instanceof java.util.ResourceBundle, return true.

Overrides: isReadOnly66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to be modified. Only bases that are of type ResourceBundle are handled.

property - The String property to use.

Returns: If the propertyResolved property of ELContext was set to true, then true; otherwise
undefined.

Throws:
java.lang.NullPointerException - if context is null

2.21.9 setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext52 context, java.lang.Object base,

java.lang.Object property, java.lang.Object value)

If the base object is a ResourceBundle, throw a PropertyNotWritableException96.

Overrides: setValue66 in class ELResolver61

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to be modified. Only bases that are of type ResourceBundle are handled.

property - The String property to use.

value - The value to be set.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotWritableException96 - Always thrown if base is an instance of
ReasourceBundle.
javax.el ResourceBundleELResolver 101

ValueExpression javax.el

setValue(ELContext, Object, Object, Object)
2.22 javax.el

ValueExpression
2.22.1 Declaration
public abstract class ValueExpression extends Expression68

java.lang.Object
|
+--javax.el.Expression68

|
+--javax.el.ValueExpression

All Implemented Interfaces: java.io.Serializable

2.22.2 Description
An Expression that can get or set a value.

In previous incarnations of this API, expressions could only be read. ValueExpression objects can now be
used both to retrieve a value and to set a value. Expressions that can have a value set on them are referred to as
l-value expressions. Those that cannot are referred to as r-value expressions. Not all r-value expressions can be
used as l-value expressions (e.g. “${1+1}” or “${firstName} ${lastName}”). See the EL
Specification for details. Expressions that cannot be used as l-values must always return true from
isReadOnly().

The ExpressionFactory.createValueExpression(ELContext, String, Class)73
method can be used to parse an expression string and return a concrete instance of ValueExpression that
encapsulates the parsed expression. The FunctionMapper75 is used at parse time, not evaluation time, so
one is not needed to evaluate an expression using this class. However, the ELContext52 is needed at
evaluation time.

The getValue(ELContext)104, setValue(ELContext, Object)105,
isReadOnly(ELContext)105, getType(ELContext)103 and
getValueReference(ELContext)104 methods will evaluate the expression each time they are called.
The ELResolver61 in the ELContext is used to resolve the top-level variables and to determine the
behavior of the . and [] operators. For any of the five methods, the
ELResolver.getValue(ELContext, Object, Object)65 method is used to resolve all properties
up to but excluding the last one. This provides the base object. For all methods other than the
getValueReference(ELContext)104 method, at the last resolution, the ValueExpression will call
the corresponding ELResolver.getValue(ELContext, Object, Object)65,
ELResolver.setValue(ELContext, Object, Object, Object)66,
ELResolver.isReadOnly(ELContext, Object, Object)66 or
ELResolver.getType(ELContext, Object, Object)64 method, depending on which was called
on the ValueExpression. For the getValueReference method, the (base, property) is not resolved by
the ELResolver, but an instance of ValueReference106 is created to encapsulate this (base ,property), and
returned.

See the notes about comparison, serialization and immutability in the Expression68 javadocs.

Since: JSP 2.1
102 Expression Language Specification • December 10, 2009

javax.el ValueExpression

ValueExpression()
See Also: ELResolver61, Expression68, ExpressionFactory71

Constructors

2.22.3 ValueExpression()

public ValueExpression()

Methods

2.22.4 getExpectedType()

public abstract java.lang.Class getExpectedType()

Returns the type the result of the expression will be coerced to after evaluation.

Returns: the expectedType passed to the ExpressionFactory.createValueExpression
method that created this ValueExpression.

2.22.5 getType(ELContext)

public abstract java.lang.Class getType(javax.el.ELContext52 context)

Member Summary

Constructors
ValueExpression()103

Methods
abstract

java.lang.Class
getExpectedType()103

abstract
java.lang.Class

getType(ELContext context)103

abstract
java.lang.Object

getValue(ELContext context)104

 ValueReference getValueReference(ELContext context)104
abstract boolean isReadOnly(ELContext context)105

abstract void setValue(ELContext context, java.lang.Object value)105

Inherited Member Summary

Methods inherited from class Expression68

equals(Object)69, getExpressionString()69, hashCode()69, isLiteralText()70

Methods inherited from class Object

clone(), finalize(), getClass(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)
javax.el ValueExpression 103

ValueExpression javax.el

getValue(ELContext)
Evaluates the expression relative to the provided context, and returns the most general type that is
acceptable for an object to be passed as the value parameter in a future call to the
setValue(ELContext, Object)105 method.

This is not always the same as getValue().getClass(). For example, in the case of an expression
that references an array element, the getType method will return the element type of the array, which
might be a superclass of the type of the actual element that is currently in the specified array element.

Parameters:
context - The context of this evaluation.

Returns: the most general acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException94 - if one of the property resolutions failed because a specified
variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing property or variable resolution. The
thrown exception must be included as the cause property of this exception, if available.

2.22.6 getValue(ELContext)

public abstract java.lang.Object getValue(javax.el.ELContext52 context)

Evaluates the expression relative to the provided context, and returns the resulting value.

The resulting value is automatically coerced to the type returned by getExpectedType(), which was
provided to the ExpressionFactory when this expression was created.

Parameters:
context - The context of this evaluation.

Returns: The result of the expression evaluation.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException94 - if one of the property resolutions failed because a specified
variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing property or variable resolution. The
thrown exception must be included as the cause property of this exception, if available.

2.22.7 getValueReference(ELContext)

public javax.el.ValueReference106 getValueReference(javax.el.ELContext52 context)

Returns a ValueReference106 for this expression instance.

Parameters:
context - the context of this evaluation

Returns: the ValueReference for this ValueExpression, or null if this ValueExpression
is not a reference to a base (null or non-null) and a property. If the base is null, and the property is a EL
variable, return the ValueReference for the ValueExpression associated with this EL
variable.

Since: EL 2.2
104 Expression Language Specification • December 10, 2009

javax.el ValueExpression

isReadOnly(ELContext)
2.22.8 isReadOnly(ELContext)

public abstract boolean isReadOnly(javax.el.ELContext52 context)

Evaluates the expression relative to the provided context, and returns true if a call to
setValue(ELContext, Object)105 will always fail.

Parameters:
context - The context of this evaluation.

Returns: true if the expression is read-only or false if not.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException94 - if one of the property resolutions failed because a specified
variable or property does not exist or is not readable.

ELException59 - if an exception was thrown while performing property or variable resolution. The
thrown exception must be included as the cause property of this exception, if available. * @throws
NullPointerException if context is null

2.22.9 setValue(ELContext, Object)

public abstract void setValue(javax.el.ELContext52 context, java.lang.Object value)

Evaluates the expression relative to the provided context, and sets the result to the provided value.

Parameters:
context - The context of this evaluation.

value - The new value to be set.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException94 - if one of the property resolutions failed because a specified
variable or property does not exist or is not readable.

PropertyNotWritableException96 - if the final variable or property resolution failed because
the specified variable or property is not writable.

ELException59 - if an exception was thrown while attempting to set the property or variable. The
thrown exception must be included as the cause property of this exception, if available.
javax.el ValueExpression 105

ValueReference javax.el

ValueReference(Object, Object)
2.23 javax.el

ValueReference
2.23.1 Declaration
public class ValueReference implements java.io.Serializable

java.lang.Object
|
+--javax.el.ValueReference

All Implemented Interfaces: java.io.Serializable

2.23.2 Description
This encapsulates a base model object and one of its properties.

Since: EL 2.2

Constructors

2.23.3 ValueReference(Object, Object)

public ValueReference(java.lang.Object base, java.lang.Object property)

Member Summary

Constructors
ValueReference(java.lang.Object base, java.lang.Object
property)106

Methods
 java.lang.Object getBase()107
 java.lang.Object getProperty()107

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
106 Expression Language Specification • December 10, 2009

javax.el ValueReference

getBase()
Methods

2.23.4 getBase()

public java.lang.Object getBase()

2.23.5 getProperty()

public java.lang.Object getProperty()
javax.el ValueReference 107

VariableMapper javax.el

VariableMapper()
2.24 javax.el

VariableMapper
2.24.1 Declaration
public abstract class VariableMapper

java.lang.Object
|
+--javax.el.VariableMapper

2.24.2 Description
The interface to a map between EL variables and the EL expressions they are associated with.

Since: JSP 2.1

Constructors

2.24.3 VariableMapper()

public VariableMapper()

Methods

2.24.4 resolveVariable(String)

public abstract javax.el.ValueExpression102 resolveVariable(java.lang.String variable)

Member Summary

Constructors
VariableMapper()108

Methods
abstract

ValueExpression
resolveVariable(java.lang.String variable)108

abstract
ValueExpression

setVariable(java.lang.String variable, ValueExpression
expression)109

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(),
toString(), wait(), wait(long), wait(long, int)
108 Expression Language Specification • December 10, 2009

javax.el VariableMapper

setVariable(String, ValueExpression)
Parameters:
variable - The variable name

Returns: the ValueExpression assigned to the variable, null if there is no previous assignment to this
variable.

2.24.5 setVariable(String, ValueExpression)

public abstract javax.el.ValueExpression102 setVariable(java.lang.String variable,

javax.el.ValueExpression102 expression)

Assign a ValueExpression to an EL variable, replacing any previously assignment to the same variable. The
assignment for the variable is removed if the expression is null.

Parameters:
variable - The variable name

expression - The ValueExpression to be assigned to the variable.

Returns: The previous ValueExpression assigned to this variable, null if there is no previouse assignment
to this variable.
javax.el VariableMapper 109

VariableMapper javax.el

setVariable(String, ValueExpression)
110 Expression Language Specification • December 10, 2009

CHAPTER A

Changes

This appendix lists the changes in the EL specification. This appendix is non-
normative.

A.1 Changes between Maintenance 1 and
Maintenance Release 2
The main change in this release is the addition of method invokations with
parameters in the EL, such as #{trader.buy(“JAVA”)}.

■ Added one method in javax.el.ELResolver:

■ Object invoke(ELContext context, Object base, Object method, Class<?>[]
paramTypes, Object[] params).

■ Added one method in javax.el.BeanELResolver:

■ Object invoke(ELContext context, Object base, Object method, Class<?>[]
paramTypes, Object[] params).

■ Added one method in javax.el.CompositeELResolver:

■ Object invoke(ELContext context, Object base, Object method, Class<?>[]
paramTypes, Object[] params).

■ Section 1.1.1. Added to the first paragraph:

Simlarly, . operator can also be used to invoke methods, when the method name
is known, but the [] operator can be used to invoke methods dynamically

■ Section 1.2.1. Change the last part of the last paragraph from

Upon evaluation, the EL API verifies that the method conforms to the expected
signature provided at parse time. There is therefore no coercion performed.

to
111

Upon evaluation, if the expected signature is provided at parse time, the EL API
verifies that the method conforms to the expected signature, and there is therefore
no coercion performed. If the expected signature is not provided at parse time,
then at evaluation, the method is identified with the information of the
parameters in the expression and the parameters are coerced to the respective
formal types.

■ Section 1.6

Added syntax for method invocation with parameters.

The steps for evaluation of the expression was modified to handle the method
invocations with parameters.

■ Section 1.19

Production of ValueSuffix includes the optional parameters.

A.2 Changes between 1.0 Final Release and
Maintenance Release 1
■ Added two methods in javax.el.ExpressionFactory:

■ newInstance()

■ newInstance(Properties)

A.3 Changes between Final Release and
Proposed Final Draft 2
Added support for enumerated data types. Coercions and comparisions were
updated to include enumerated type types.
112 Expression Language Specification • Maintenance Release 2 - December 10, 2009

A.4 Changes between Public Review and
Proposed Final Draft
New constructor for derived exception classes

Exception classes that extend ELException (PropertyNotFoundException,
PropertyNotWritableException, MethodNotFoundException) did not have a
constructor with both 'message' and 'rootCause' as arguments (as it exists in
ELException). The constructor has been added to these classes.

javax.el.ELContext API changes

■ removed the ELContext constructor
protected ELContext(javax.el.ELResolver resolver)

■ added the following abstract method in ELContext
public abstract javax.el.ELResolver getELResolver();

Section 1.8.1 - A {<,>,<=,>=,lt,gt,le,ge} B

■ If the first condition (A==B) is false, simply fall through to the next step (do not
return false). See See issue 129 at jsp-spec-public.dev.java.net.

javax.el.ResourceBundleELResolver

■ New ELResolver class added to support easy access to localized messages.

Generics

■ Since JSP 2.1 requires J2SE 5.0, we’ve modified the APIs that can take
advantage of generics. These include:
ExpressionFactory:createValueExpression(),
ExpressionFactory:createMethodExpression(),
ExpressionFactory:coerceToType(), ELResolver:getType(),
ELResolver:getCommonPropertyType(), MethodInfo:MethodInfo(),
MethodInfo.getReturnType(), MethodInfo:getParamTypes()
Chapter A Changes 113

A.5 Changes between Early Draft Release
and Public Review
New concept: EL Variables

The EL now supports the concept of EL Variables to properly support code
structures such as <c:forEach> where a nested action accesses a deferred expression
that includes a reference to an iteration variable.

■ Resulting API changes are:

■ The javax.el package description describes the motivation behind EL
variables.

■ ElContext has two additional methods to provide access to
FunctionMapper and VariableMapper.

■ ExpressionFactory creation methods now take an ELContext parameter.
FunctionMapper has been removed as a parameter to these methods.

■ Added new class VariableMapper

■ At a few locations in the spec, the term "variable" has been replaced with "model
object" to avoid confusion between model objects and the newly introduced EL
variables.

■ Added new section “Variables” after section 1.15 to introduce the concept of EL
Variables.

EL in a nutshell (section 1.1.1)

■ Added a paragraph commenting on the flexibility of the EL, thanks to its
pluggable API for the resolution of model objects, functions, and variables.

javax.el.ELException

■ ElException now extends RuntimeException instead of Exception.

■ Method getRootCause() has been removed in favor of
Throwable.getCause().

javax.el.ExpressionFactory

■ Creation methods now use ELContext instead of FunctionMapper (see EL
Variables above).

■ Added method coerceToType(). See issue 132 at jsp-spec-public.dev.java.net.

javax.el.MethodExpression

■ invoke() must unwrap an InvocationTargetExceptions before re-throwing
as an ELException.
114 Expression Language Specification • Maintenance Release 2 - December 10, 2009

Section 1.6 - Operators [] and .

■ PropertyNotFoundException is now thrown instead of
NullPointerException when this is the last property being resolved and we’re
dealing with an lvalue that is null.

Section 1.13 - Operator Precedence

■ Clarified the fact that qualified functions with a namespace prefix have
precedence over the operators.

Faces Action Attribute and MethodExpression

In Faces, the action attribute accepts both a String literal or a
MethodExpression. When migrating to JSF 1.2, if the attribute's type is set as
MethodExpression, an error would be reported if a String literal is specified
because a String literal cannot evaluate to a valid javax.el.MethodExpression.

To solve this issue, the specification of MethodExpression has been expanded to also
support String literal-expressions. Changes have been made to:

■ Section 1.2.2

■ ExpressionFactory.createMethodExpression()

■ javax.el.MethodExpression:invoke()
Chapter A Changes 115

116 Expression Language Specification • Maintenance Release 2 - December 10, 2009

	Expression Language Specification Version 2.2 Maintenance Release
	Contents
	Preface
	Historical Note
	Related Documentation
	Typographical Conventions
	Acknowledgments
	Comments

	Language Syntax and Semantics
	1.1 Overview
	1.1.1 EL in a nutshell

	1.2 EL Expressions
	1.2.1 Eval-expression
	1.2.1.1 Eval-expressions as value expressions
	1.2.1.2 Eval-expressions as method expressions

	1.2.2 Literal-expression
	1.2.3 Composite expressions
	1.2.4 Syntax restrictions

	1.3 Literals
	1.4 Errors, Warnings, Default Values
	1.5 Resolution of Model Objects and their Properties or Methods
	1.6 Operators [] and .
	1.7 Arithmetic Operators
	1.7.1 Binary operators - A {+,-,*} B
	1.7.2 Binary operator - A {/,div} B
	1.7.3 Binary operator - A {%,mod} B
	1.7.4 Unary minus operator - -A

	1.8 Relational Operators
	1.8.1 A {<,>,<=,>=,lt,gt,le,ge} B
	1.8.2 A {==,!=,eq,ne} B

	1.9 Logical Operators
	1.9.1 Binary operator - A {&&,||,and,or} B
	1.9.2 Unary not operator - {!,not} A

	1.10 Empty Operator - empty A
	1.11 Conditional Operator - A ? B : C
	1.12 Parentheses
	1.13 Operator Precedence
	1.14 Reserved Words
	1.15 Functions
	1.16 Variables
	1.17 Enums
	1.18 Type Conversion
	1.18.1 To Coerce a Value X to Type Y
	1.18.2 Coerce A to String
	1.18.3 Coerce A to Number type N
	1.18.4 Coerce A to Character
	1.18.5 Coerce A to Boolean
	1.18.6 Coerce A to an Enum Type T
	1.18.7 Coerce A to Any Other Type T

	1.19 Collected Syntax

	Java APIs
	javax.el
	ArrayELResolver
	BeanELResolver
	BeanELResolver.BeanProperties
	BeanELResolver.BeanProperty
	CompositeELResolver
	ELContext
	ELContextEvent
	ELContextListener
	ELException
	ELResolver
	Expression
	ExpressionFactory
	FunctionMapper
	ListELResolver
	MapELResolver
	MethodExpression
	MethodInfo
	MethodNotFoundException
	PropertyNotFoundException
	PropertyNotWritableException
	ResourceBundleELResolver
	ValueExpression
	ValueReference
	VariableMapper

	Changes
	A.1 Changes between Maintenance 1 and Maintenance Release 2
	A.2 Changes between 1.0 Final Release and Maintenance Release 1
	A.3 Changes between Final Release and Proposed Final Draft 2
	A.4 Changes between Public Review and Proposed Final Draft
	A.5 Changes between Early Draft Release and Public Review

