
Explanation of Code

Not required
When calling sort, the outer for loop is responsible for keeping track of the size of sorted
sub-arrays, because the sorted components are logically separated.
A quick peek into the debugger using input array of [3, 5, 1, 6, 7, 2, 8, 4] shows

sortedSize input array(with brackets to emphasize logical separation)
1 [3], [5], [1], [6], [7], [2], [8], [4]
2 [3, 5], [1, 6], [2, 7], [4, 8]
4 [1, 3, 5, 6], [2, 4, 7, 8]
8* [1, 2, 3, 4, 5, 6, 7, 8]

*Does not enter loop on sortedSize == 8

The inner for loop is responsible for merging adjacent sorted sub-arrays into a single
sorted sub-array (or array if it is performing the final merge). Again, because the sub-
arrays are only logically separated, it has to ensure it passes in the correct indices into
merge.

The merge functions as the same as any merge you’ve seen before; it takes two sorted
arrays and creates one sorted array. leftIndex marks the start point of the first sorted sub-
array (inclusive). midIndex marks the end point of the first sorted sub-array (inclusive).
rightIndex marks the end of the second sorted sub-array (inclusive).

It is also known as bottom-up merge sort because it begins by treating the elements
individually; whereas the recursive version takes the entire array and breaks it down into
smaller and smaller pieces. This image illustrates the recursive form.

Figure 1

More about top-down/bottom-up http://en.wikipedia.org/wiki/Top-down and bottom-
up design

1



Analysis

Many of you did not include an analysis

A quick note- since we are moving away from recursion and into iteration, it no longer
follows the divide-and-conquer paradigm:

• Divide the problem into one or more subproblems.
• Conquer subproblems by solving them recursively. If the subproblem sizes are

small enough, however, just solve the subproblems in a straightforward manner.
• Combine the solutions to the subproblems into the solution for the original problem.

See http://stackoverflow.com/questions/9126690/compare-divide-and-conquer-with-recursion
for more information.

Let N be the size of the input array. The outer for loop loops roughly log2(N), ignor-
ing constants. The inner for loop is responsible for merging adjacent sub-arrays. Tim
Roughgarden showed that merging together arrays at any level uses at most 6N opera-
tions. Since each iteration requires 6N operations and we have log2(N) iterations, this
gives us a running time of 6Nlog2(N). Expressed as big-O, O(nlog(n)). �

2


