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Abstract 

This paper derives a regression-based test to detect bidder-auctioneer cheating in sealed 
bid auctions. I apply this regression test to data from the New York City School Construction 
Authority auctions, an approximate one billion dollar per year auction market in which an 
auctioneer engaged in bidder-auctioneer cheating. Using the regression analysis to compare lots 
where bid rigging occurred with certainty to all other auctions allows one to conclude that 
bidder-auctioneer cheating significantly distorted the bid distribution. Comparing specific 
auctioneer lots before news of the cheating scandal became public with those after the scandal, I 
find significant differences in bidding, at the 10 percent level of significance, for two 
auctioneers. Therefore, bidder-auctioneer cheating may not have been limited to the one 
auctioneer charged with rigging bids.  
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Introduction 

Much has been written on the topic of bidder collusion, often called bidding rings or 

cartels, in auction markets. In a bidding ring, bidders agree before the auction to bid as a single 

entity. Such collusion reduces competition at the auction, and creates an artificial surplus that can 

then be divided among the ring members after the auction. Robinson (1985), Graham and 

Marshall (1987), and MacAfee and McMillan (1991) are examples of theoretical works on this 

subject. Porter and Zona (1993), Brannman (1996), and Baldwin, Marshall, and Richard (1997), 

offer statistical evidence for the presence of bidding rings in auction data. Until recently, the 

possibility of collusion between a bidder and an auction official has received little attention in 
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the literature.1 Yet, given the willingness of bidders to collude in auctions,2 the potential for 

bidder-official collusion should be considered, because many large auctions (particularly 

government auctions) hire officials whose salaries are small relative to the prices of the items 

they auction off. Consequently, certain auction officials would enter a bid-rigging scheme in 

exchange for a sufficient kickback from a dishonest bidder. Also, a collusive equilibrium 

involving a bidding ring may not exist in a sealed-bid auction. In particular, ring members may 

not be informed of each other’s bids, and therefore cannot punish those who break the ring 

(Robinson, 1985). Bidders that wish to organize a cartel to raise their profits might find such 

collusion impossible in a sealed bid environment. As an alternative, dishonest bidders may 

decide to bribe an auction official. Indeed, at least two incidents of bidder-auctioneer cheating 

have occurred in bidding markets for contracts in New York City.3 

This paper contributes to the existing bid-rigging literature by analyzing a collusive 

mechanism between a bidder and an auctioneer. The mechanism is studied in both general terms 

and in the context of a specific case study—namely, the market for school repair and 

construction in New York City that is run by the New York City School Construction Authority 

(SCA hereafter). Section I defines the bidder-auctioneer cheating mechanism. Section II reviews 

the relevant literature, and Section III reviews the market for school construction and renovation 

in New York City. In Section IV, I present a model of bidder-auctioneer collusion, and then 

propose a statistical test to expose bidder-auctioneer cheating. 

                                                 

1 Andvig (1995) discusses bidder-auctioneer cheating as a form of favoritism that could exist in sealed-bid 
auctions for oil leases. Furthermore, Burguet and Perry (2000) and Menezes and Monteiro (2002) have working 
papers on bidder-auctioneer cheating in first-price sealed bid auctions. These papers are discussed below. Finally, 
Rothkopf and Harstad (1995) model auctioneer-only cheating in a Vickrey auction context.   

2 According to Porter and Zona (1993), more than 50% of the criminal cases filed between 1982 and 1988 by 
the Antitrust Division of the Department of Justice involved cheating in auction markets. 

3   Those two incidents are the bid-rigging scandal in the auctions for New York City School Construction 
Authority Contracts, which I examine in this paper, and the auctions for contracts to repair, demolish, or reconstruct 
low income housing in New York City that was collected for non-payment of taxes (Farber, 1988). 
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I. Bidder-Auctioneer Cheating and the “Magic Number”  

Because the auctions for school construction contracts in New York are procurement 

auctions, this paper models bidder-auctioneer cheating within the context of a procurement 

auction. With trivial modifications, however, the model could be modified to reflect a value 

auction setting.4 A procurement auction is an auction for a contract to perform a service for the 

auctioning body.  The winning bid is therefore the lowest bid received rather than the highest bid 

received, as is the case in auctions for art, wine, or various collectibles.  

The auction mechanism is a first-price, sealed bid auction.  Contractors view their own 

private costs, and submit bids based on those costs. An auctioneer opens bids at a public 

ceremony, reading and recording bids. The lowest bid wins the contract, and the winning 

producer receives her bid as payment for completed work. 

By bribing an auctioneer, a dishonest bidder could rig the outcome of a sealed-bid 

procurement auction. In particular, the dishonest bidder would persuade an auctioneer to falsify a 

bid on its behalf. The bidder would reveal its private costs to the auctioneer. The auctioneer 

would then agree to view all legal bids, and if the lowest legal bid were above the dishonest 

producer's cost, the auctioneer would submit a fake bid just below the lowest legal bid. Not only 

would the dishonest bidder increase its probability of winning that auction, it would also secure 

the contract at the highest possible price. This form of cheating will be referred to as "magic 

number" cheating. The magic number is the artificial bid the auctioneer would submit on behalf 

of the dishonest bidder.  

                                                 

4  In moving from a procurement auction to a value auction, the only real change in notation is that the 
probability of winning the auction is determined by the probability of bidding above other bidders rather than below 
them.  Note, however, that this is strictly a mathematical argument.  In general, different assumptions, such as 
common costs or affiliated values, are made on the underlying distributions when modeling a procurement market or 
a market of value.  If different assumptions apply to a value auction, then obviously the results presented here will 
not apply directly to a value auctions. 
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For this type of cheating to be successful, it is necessary for the auctioneer to have 

complete control over the submitted bids long enough to doctor one bid, before any honest 

persons could view them. If the auction is private then the auctioneer would also own and police 

the market, and therefore the opportunity for this type of cheating should exist. If the auction is 

public, however, and the auctioneer is a government employee, then the opportunity for magic 

number cheating would depend upon how well the agency monitors its auctioneers.   

 

II. Bid-Rigging Literature 

The economics literature on the theory of bid-rigging and on the detection of bid-rigging 

in auction data is vast. Furthermore, several theory articles have recently been written on the 

collusion between a bidder and an auctioneer. Although I am unaware of any empirical papers on 

the topic of bidder-auctioneer cheating, the empirical bid-rigging literature provides insight to 

the proper manner to detect such collusion. 

A. Theoretical 

Burguet and Perry (2001) and Menezes and Monteiro (2002) have written a working 

paper on the subject of bidder-auctioneer collusion. Burguet and Perry consider a procurement 

auction market in which a dishonest seller competing against an honest seller has the option of 

bribing the buyer.5  If a bribe occurs, the auctioneer will submit a rigged bid for the dishonest 

bidder, and the buyer will receive a percent of the dishonest bidder’s profits in exchange.6 The 

authors find that bribery can correct inefficiency in the auction if the dishonest bidder has a 

stochastic cost advantage over its opponent. Alternatively, added inefficiency results if the high-
                                                 

5  Because the market is one of procurement, the auctioneer is a government entity that is purchasing services 
from a list of potential suppliers—namely the bidders. 

6  The auctioneer submits the fake bid only if the dishonest bidder’s cost is less than the honest bidder’s bid. 
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cost bidder is dishonest. Finally, the authors find that the effect of briber on auction prices is 

ambiguous. 

Menezes and Monteiro (2002) and have also studied bidder-auctioneer cheating. In their 

working paper, Menezes and Monteiro analyze bidder-auctioneer cheating in a value-auction 

setting with n risk neutral bidders with independent private values. The possibility of bribery 

occurs in every auction in that the auctioneer approaches the winning bidder and offering him a 

chance to lower his winning bid. Under both fixed and proportional bribery schemes they derive, 

when possible, the equilibrium, symmetric bid function. When this function exists, the auction is 

still efficient.  

Other papers also study bribery schemes between a bidder and an auctioneer. Andvig 

(1995) considered the possibility of a bidder in North Sea oil auctions bribing an auction official 

in exchange for proprietary information. Arozamena and Weinschelbaum (2004) study the 

conditions under which a bidder will adjust its bid when it believes an opponent is bribing the 

auctioneer. Finally, Lengwiler and Wolfstetter (2000) analyze the effects of bidder-auctioneer 

cheating on auction bids and auction revenues.  

B. Empirical 

Although the theoretical literature on collusion in auctions exceeds in size the empirical 

literature on the topic, a growing body of empirical research has recently been written. Porter and 

Zona (1993), offer statistical tests for the detection of bidding rings that compare non-collusive 

auction lots to those where collusion is know to have existed. The authors have a priori 

knowledge of a bidding ring in the market for highway contracts in New York and know the 

identities of all cartel members. Chow tests reveal statistical differences in the estimated 

parameters between least-squares regressions of bid functions, and a multinomial logit model of 
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bid rankings reveals statistical differences in low versus high ranking bids. The authors are then 

able to reject the null hypothesis that bid behavior is similar between the cartel and non-cartel 

samples. The authors conclude that the bidding ring did in fact distort the auction from a 

competitive market.  

Bajari and Summers (2002) survey the empirical research on collusion in procurement 

auctions, and Fienstein, Block and Nold (1985) study the anti-competitive effects of bidding ring 

in the market for road construction contracts in North Carolina. Baldwin, Marshall, and Richard 

(1997) use a maximum likelihood model to detect evidence of collusion at U.S. Forest Service 

timber auctions while controlling for supply-side effects. Furthermore, Pesendorfer (2000) 

analyzes collusion in the procurement markets for school milk contracts in Texas and Florida.       

 

III. Industry for School Construction and Renovation in New York City 

The New York City School Construction Authority was created to improve upon the 

corruption and ineptitude that existed within its predecessor, the New York City Division of 

Buildings. By 1988, the Division of Buildings was the third largest maintenance office in the 

United States, after the maintenance offices of the Pentagon and the U.S. Postal Service.7 In 

1986 and 1987, nearly 30 inspectors and officials within the Division of Buildings were charged 

with bribery related crimes. Furthermore, the Division of Buildings required as much as 19 

months to respond to what were often small maintenance requests, such as fixing a broken 

window (Dillon, August 15, 1993). Consequently, the School Construction Authority was 

                                                 

7 The Division of Buildings was responsible for construction and maintenance in over 1,000 school buildings 
(Dillon, August 15, 1993). 
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created to handle the contracting and supervision of new school construction and major 

renovation and rehabilitation projects.  

The major initiatives of the School Construction Authority included (1) assigning only 

one project manager to a job site, (2) paying contractors within 30 days after successful 

completion of a phase of a project, and (3) creating an inspector general’s office with the power 

to investigate corruption. The first initiative was established to reduce arguments among project 

managers that had been assigned to the same job. It was thought that by having only one 

manager on site, change orders that were required would be granted more quickly, and the rate of 

project completion would be improved. The School Construction Authority decided to set the 

second guideline because in the past it had taken as long as a year for firms to be paid for 

completed work. As a result, many qualified firms refused to bid for projects. Finally, the logic 

behind having an inspector general’s office was simple: police and reduce corruption in the 

industry (Raab, 1989).8 

A. The School Construction Authority Auction Process 

The School Construction Authority used first-price sealed bid auctions to allocate 

contracts.  Auctioned contracts range in scale from the installation of a handicap sink (an 

estimated $6,700 job) to the construction of a new school (an estimated $85,000,000 job).  Job 

sites are spread over all five New York City boroughs.9  Most jobs are located in a single 

building, although some jobs require service at multiple buildings throughout a single borough, a 

                                                 

8 One should note that oversight of the process is particularly important in light of the first initiative. In 
particular, multiple project managers make it more difficult to successfully engage in a change order scam—that is, 
changing the price of a component of a contract because of unforeseen complications in construction that are not the 
contractor’s fault. 

9 Bronx, Brooklyn, Queens, Manhattan, and Staten Island.  



  8  

combination of boroughs, or the entire city.10  The main players in the auction scheme are the 

bidders, the contract specialists, and the project officers. 

The bidders are construction firms.  To bid on a project, a firm must first pre-qualify, 

which involves filling out a 22-page form detailing information about individuals in the firm, 

previous work completed for the city, past work experience, and a history of the ownership of the 

firm.11  Bids submitted by firms that are not yet pre-qualified are immediately rejected.  If the 

prequalification form is filled out incorrectly, all bids on all projects from that firm are rejected 

until the prequalification form is properly completed.  Firms will be denied prequalification 

status if key members within the firm have recent criminal convictions, are under criminal 

investigation, or are suspected of “integrity problems.”  The inspector general’s office at the 

School Construction Authority performs background checks on bidding firms and their 

employees.      

The first official involved in the auction process is the contract specialist, an employee of 

the School Construction Authority.  Contract specialists serve as auctioneers, opening sealed 

bids, recording those bids, ensuring that forms are completed properly, and ultimately assigning 

the job to a contractor. Contract specialists are not necessarily assigned to auctions based on job 

type (as is the case with project officers, as detailed below). Specialists are generally assigned 

between 10 and 40 contracts per fiscal year. Their main duty is to assign contracts quickly, and 

to the lowest-cost firm that is best suited to perform the work. Thus, if the lowest submitted bid 

is from a pre-qualified firm that correctly completed all its paperwork, including listing 

                                                 

10 For example, many asbestos abatement jobs were contracted out for buildings across multiple boroughs. 
11 Subcontractors completing more than an estimated $10,000 worth of work on a project must be registered 

with SCA.  If the value of their work is under $500,000, they may be only “sub-registered,” and must fill out less 
paperwork than if they are to perform more than $500,000 worth of work, which requires prequalification status and 
the 22-page form that accompanies said status. Prequalification applications are available on the School 
Construction Authority’s website at http://www.nycsca.org/html/forms.html#t_pre1296.  



  9  

registered or pre-qualified subcontractors where necessary, then that firm is awarded the job. 

Otherwise, the specialist considers the integrity of the firm that submitted the next lowest bid. 

The process continues until a suitable contractor whose paperwork is in order secures the job. As 

a final note, there are occasions when contract specialists work together on a single auction, but 

these instances are very rare.   

The second type of official employed at the School Construction Authority is the project 

officer.  Project officers visit the site of a project and estimate its scale (often with the help of 

design plans from the SCA’s engineering office) across all dimensions that would affect the cost 

of project completion.  These measurements, and any design plans, are then made public to all 

firms wishing to submit a bid in the auction.  The firms can either visit the SCA to view the 

plans, or they can order their own copies.12  In addition, the project officer calculates a project 

estimate—that is, the estimated cost of completing the job. The estimate is recorded at the SCA 

but is not made public. Once a contractor has been assigned a job, the project officer routinely 

visits the job site to ensure that construction is completed in a satisfactory manner.  Because of 

the nature of the project officer’s job, officers are assigned to sites based on job type.     

B. The Bid Rigging Scheme 

During the summer of 1992, Elias Meris, the principal owner of the Meris Construction 

Corporation of Brooklyn, New York, was under investigation by the Internal Revenue Service.  

Seeking leniency from IRS agents, Meris offered to provide information on a bid-rigging scam 

involving School Construction Authority employees and other contractors. Working undercover 

for prosecutors, Meris taped conversations with senior project officer John Dransfield. As a 

consequence of those conversions, prosecutors charged both Dransfield, and his colleague, Mark 

                                                 

12 Costs range from about $50 to $250. 
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Parker, a contract specialist, who organized the scheme with bid-rigging.  When confronted by 

authorities, Parker secretly pleaded guilty to charges of accepting bribes, and began working 

undercover to weed out contractors who were also on the take.  Dransfield, however, pleaded not 

guilty to charges of accepting bribes until January 21, 1994 when he finally pleaded guilty to this 

charge (Raab, 1993; Fried, 1994).  The Inspector General’s office at the SCA estimated that 

Dransfield accepted $100,000 in bribes from the cheating scam and laundered the money through 

his Long Island construction firm (Fried, 1994).  In addition to Parker and Dransfield, Samuel 

Manoharan, a project officer at the School Construction Authority, was charged with accepting 

bribes. In particular, Manoharan was charged with accepting between $3,000 and $4,000 in 

bribes for allowing a change order and for passing electrical work he should have failed 

(Olmstead, 1993).  

Parker and Dranfield used magic-number cheating in their collusion scheme.  Parker 

organized the scheme, and used Dransfield as an industry connection to recruit contractors into 

their group. Specifically, Dransfield would meet with the dishonest bidder prior to the bid 

submission. At that meeting, Dransfield suggested that the bidder submit a bid well below the 

projected price of the contract. At the public bid openings, Parker would save the dishonest 

contractor’s bid for last, and knowing the current low bid, he would read aloud a false bid just 

below this price. Then, after the bid opening, Dransfield would use Wite-Out to doctor the bid 

form (Dwyer, April 21,1993). In this manner, the dishonest contractor is almost certain to win 

the contract, and will win the contract at the highest possible price (Olmstead, April 21, 1993). 

Furthermore, the School Construction Authority allowed bid withdrawals if a bidder believed 

that it erred in its cost calculations. Consequently, if Parker was being monitored at the bid 
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opening and was unable to submit a false bid for that contractor, the contractor would not be 

required to complete the job for the low contract amount that he originally submitted.   

Along with Parker and Dransfield, eleven individuals within seven contracting firms were 

implicated in the scam.  These firms were Christ Gatzonis Electrical Contractor Inc., GTS 

Contracting Corp., Batex Contracting Corp., American Construction Management Corp., Wolff 

& Munier Inc., Simins Falotico Group, and CZK Construction Corp. (Olmstead, 1993; Raab, 

1993).  These seven firms won at least 43 SCA auctions with winning bids totaling over $23 

million.13 

 

IV. A Test for Magic Number Cheating 

This section derives a regression specification that one may use to detect magic number 

cheating in sealed bid auctions. Because magic number cheating results in an artificial distortion 

of the distance between the first and second bids, a suitable test should compare the information 

available in the upper portion of the bid distribution to the distance between the two lowest bids. 

Below, I show that the third bid is the only bid from the upper portion of the bid distribution that 

need be included in the regression. This result is attractive, because it only restricts one’s sample 

to auctions lots with at least three bidders.  

A. Basic Model and Properties of the Ordered Bids  

This section makes the assumption of pure private costs. In particular, assume that in a 

given auction lot, l, each bidder’s cost is a random draw from a common distribution. Costs are 

private information, although each bidder knows the distribution from which costs are drawn.  
                                                 

13 Some of these contracts were cancelled after criminal charges were made. In addition to the 43 winning 
contracts, these firms may have served as subcontractors on many further projects. However, the subcontractor data 
is unavailable.   
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Formally, each bidder, i, independently draws a cost, ci, from a cost distribution F(c), 

which is continuously distributed on the range [ , ]c c . N represents the number of bidders in the 

auction. Riley and Samuelson (1981) and Paarsch (1994), among others, show that the 

monotonic increasing bid function B(.) results: 

1
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Because B(.) is a monotonic increasing function on [ , ]c c , the corresponding bids will 

also be randomly distributed, as shown in Guerre, Perrigne, and Vuong (2000). Therefore, for 

any given auction lot, log bids,14 B={B1, B2,…, BN}, are a random sample of size N from 

continuous density function g(b) on (bmin,bmax), with associated distribution G(b). 

Because bids are analyzed in order, they are therefore order statistics. Define the ordered 

log bids as B = {S1, S2,…, SN}, where S1 is the lowest-valued draw from g(b), S2 the second 

smallest, and so forth. The density and distribution functions of Si, call them fi(s) and Fi(s) 

respectively, are given in David (1981, 8-9): 
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14 Because draws from a random sample can undergo any monotonic transformation and still maintain all their 
properties, if bids are drawn randomly then log bids are too.  Thus, from this point on the analysis employs log bids 
only. 
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Because order statistics form a Markov process (David 1981, 20), the draws S1, S2,…, Si 

can be seen as order statistics drawn from the density g(s) truncated on the right at the value y 

that exceeds Si.  For example, given Si+1 = y, Si has a conditional density of   
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Also, because of the Markovian nature of order statistics one can write the following: 

1 1 2 2 1 1( | , ,..., ) ( | )i i i i N N i if s S s S s S s f s S s+ + + += = = = =     (4.4) 

 In words, a truncation at an order statistic higher than i+1 is meaningless if one has already 

truncated the density at i+1.       

B. The Distribution of the First Spacing 

Because magic number cheating distorts the distance between the first and second bids, 

we are therefore interested the difference between those two bids. The difference between two 

order statistics is called a spacing (David, 99). Define Dij = Sj – Si as the difference between the 

jth and ith order statistics. The density of Dij is given by equation 4.5 below. 
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In the equation 4.5, N is the sample size, and Cij is a constant equal to !
( 1)!( 1)!( )!

N
i j i N j− − − −

 

(David, 11).15  The derivation of equation 4.5 is available in Pyke (1965). We can now modify 

the above equation to fit our particular case.   

When studying magic number cheating the researcher is interested in the particular case 

where i = 1 and j = 2.  Furthermore, if the third ordered bid is known, the first and second 

ordered bids are draws from the distribution g(b) truncated at the third ordered bid.  Hence, one 

is interested in the density of the first spacing when the sample size is two. Applying simple 

algebra to equation 4.5, and using D = D21 for notational convenience yields the following: 

21( ) 2 ( ) ( )f D g s g D s ds
∞

−∞

= +∫ , for D > 0, and 0 otherwise.      (4.6) 

However, the underlying density from which we are drawing the unordered bids is the 

density g(.), truncated on the right at the value y, where y is the realization of S3.  Therefore, 

unordered bids are drawn from (.) / ( )g G y . Inserting this density into the above equation, and 

noting that G(y) is a constant with respect to s, one can write the density of D conditioned 

on 3S y= , written  21 3( | )f D S y= , as     

21 3 2
0

2( | ) ( ) ( )
( )

y

f D S y g s g D s ds
G y

= = +∫ , if 0 < D < y, and 0 otherwise   (4.7) 

Conditioning on other log bids in addition to the 3rd log bid will not change equation 4.7, 

as the density is already truncated at the 3rd log bid. Hence, the 3rd log bid is the only log bid that 

the researcher must condition on to explain the difference of the 2nd and 1st log bids.16 

                                                 

15  This is equation 2.3.1 on page 11 of David, 1981. 
16  Additionally, we should note that this property allows for maximal use of our sample data.  If we condition 

on the 4th log bid as well, we must naturally omit lots with only three submitted bids, and will therefore lose 
efficiency. 
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C. A Model of Magic Number Cheating 

Consider auction lots in which magic number cheating has occurred. One must first 

assume that if magic number cheating occurs, the dishonest bidder would have won the auction 

regardless. If this assumption is not made, then the observed bid ordering is not the true bid 

ordering, and the model is incorrectly specified.  However, one should note that the gains from 

magic number cheating are highest when the dishonest bidder has the lowest cost, and would 

therefore win the auction absent collusion. Therefore, this assumption has some merit. 

I model magic number cheating as a further truncation of the distribution of the first 

spacing. Specifically, after viewing S3 = y, the auctioneer chooses a function ( )yθ , where 

0 ( )y yθ< < , and truncates the density of the first spacing at ( )yθ rather than y. Thus, the 

density of this first spacing, when magic number cheating is present, can be written as  

 21 3 21 3( | , ) ( | ( ))f D S y collusion f D S yθ= = =      (4.7) 

Equation 4.7 holds for values within the ranges (0, ( )yθ ). Consequently, the auctioneer 

maintains the random nature of the spacing between the lowest log bids, but reduces the range 

under which this spacing is drawn.   

Two characteristics of equation 4.7 provide a logical test for magic number cheating: 

1. The expected value of the first spacing, conditioned on the third log bid, 

decreases when magic number cheating exists. 

2. If the collusive parties are insensitive to changing ( )yθ when y changes, the 

marginal effect of a change in the third bid on the expectation of the first 

spacing is, most likely, negative.  
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A first-order stochastic dominance argument allows one to prove the first characteristic, 

and an application of Leibniz’s rule to equation 4.7 allows one to verify the second. The 

appendix contains both analyses.  

D. Regression Specification 

Although the relationship between the log of the third bid and the conditional expectation 

of the first spacing will vary with the underlying bid distribution, if bids are distributed 

uniformly with a lower bound equal to 0, then the relationship will be linear. Therefore, a bid 

distribution exists that would justify a linear regression of the third bid on the first spacing—an 

attractive result indeed. Furthermore, one can show (see the appendix) that the upper bound of 

the uniform distribution is superfluous in the regression, so long as the third bid is included. In 

particular, because the distribution is already truncated at the third bid, the upper bound of the 

distribution is meaningless. Therefore, the upper bound of the bid distribution can vary across 

auction lots without affecting the regression specification. However, for other distributions 

where one can solve for the conditional expectation, such as the exponential distribution, the 

relationship between the first spacing and the third bid is non-linear. The appendix contains these 

derivations. 

Define Y as an Lx1 vector of log differences between the second and first observed bids, 

where L is the total number of auction lots with at least 3 submitted bids. Define X as an LxK 

matrix of explanatory variables, including the log of the third bid, moments of the number of 

bidders, and various lot characteristics. However, conditioning on the third bid, in theory, 

eliminates the dependence of the density of the first spacing on the number of bidders (see 

equations 4.6 and 4.7 above). One can then perform the following regression using least squares: 
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21Y X β ε= + ,          (4.8) 

where ε is an Lx1 disturbance vector with zero mean. 

According to the first characteristic in section IV C, the expected value of the first 

spacing decreases in instances of magic number cheating. Therefore, if one knows the sample of 

collusive auction lots, one can perform the following regression to determine if magic number 

cheating alters bidding: 

21Y Z eδ= +           (4.8) 

In equation 4.8, Z is an Lxk+1 covariate matrix that is identical X, but for the addition of a 1-0 

variable that identifies the collusive auction lots. If the coefficient on this indicator variable is 

negative and statistically significant, then one can conclude that magic number cheating 

significantly distorted the bid distribution in the direction suggested by characteristic 1 above. 

Consequently, a detection of magic number cheating amounts to a test for structural change in 

the regression coefficient between samples in which the researcher either knows or believes that 

magic number cheating has occurred.  

 

V. Empirical Analysis of School Construction Authority Auctions 

 

A. Data Summary 

The complete School Construction Authority data set (including all auctioned contracts) 

represents 1,789 auctions held from May 1990 to January 1997.  In these 1,789 auctions, just 

over $3 billion in contracts were awarded. Of these, 969 auctions representing a total of $2.29 

billion in winning bids were competitive—that is, more than one contractor submitted a bid. 

Because the regression specification requires the 3rd lowest bid as an explanatory variable, the 
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890 auctions, with a sum of $2.24 billion in winning bids, in which at least three firms bid are 

relevant. Omitting the seven lots where I know magic number cheating occurred,17 the sample 

then falls to 883 lots with a total of $2.23 billion in winning bids.18 Table 1 contains a list of 

variable names used in the regression analysis.  

TABLE 1:  VARIABLE DEFINITIONS 
ldev21  Log(2nd low bid) – log(winning bid) 

lbid3    log(3rd low bid) 

n        number of bidders 

nsq      number of bidders squared 

lncost         log(project estimate) 

CS#      1 if lot was auctioned by a particular CS. 

April21           1 if lot was auctioned before April 21, 
1993.  

 

The variable April21 is used to control for possible collusion in auctions where I am 

unsure cheating has occurred. Table 2 includes a summary of the variables, other than contract 

specialist indicator variables, listed in Table 1, and the value of the winning bid for the sample of 

883 lots. Finally, Table 3 provides summary statistics on the number of auction lots that contract 

specialists presided over in each of the three relevant samples. 

                                                 

17 Although Parker plead guilty to rigging bids in eight auctions, I can identify only seven of the eight in the 
dataset. 

18 Compared to the typical auction dataset, 900 observations is quite large. Guerre, Perrigne and Vuong (1999) 
use samples of 200 in their Monte Carlo study explaining that this is a typical sample size for auction data.   
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TABLE 2:  SUMMARY STATISTICS FOR REGRESSION SAMPLE:  
N≥3 COLLUSION IS UNCERTAIN 

Variable Mean Std Min Max 
bid      2458000 6425000 3500 6.67e+07 
ldev21  0.105 0.102 0 0.699 
lbid3      13.302 1.709 8.7 18.05 
n        6.929 4.131 3.0 28.0 
nsq        65.07 89.77 9.0 784.0 
lncost     13.293 1.72 8.52 18.26 
April21         0.617 0.486 0.0 1.0 

 

TABLE 3:  SUMMARY OF CONTRACT SPECIALIST INDICATOR VARIABLES 
 Total x = 1 x = 0 

# officers 22 16 14 
ave # lots 38.45 31.81 24.07 
std # lots 37.13 27.12 20.92 
min # lots 1 1 1 

max # 119 92 63 
officer missing 37 36 1 

 

B. Analysis of Auctions in which Cheating Occurred 

The auction lots in which Parker was known to have engaged in magic number cheating 

are of specific interest. In particular, because one knows these auctions are tainted, one can 

control for these lots in the regression specification to determine if collusion resulted in a 

statistically significant change of the bid distribution. Table 4 contains results from least squares 

regressions of the first log spacing on the third log bid, other auction characteristics, and an 

indicator variable that equals one if magic number cheating is known to have occurred.  
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TABLE 4:  ANALYSIS OF MAGIC NUMBER AUCTION LOTS:  
DEPENDENT VARIABLE IS THE FIRST LOG SPACING 

 Full Sample Parker Only Lots 
Variable Coef |t-stat| |t-White| Coef |t-stat| |t-White| 
lbid3 0.040** 4.08 3.53 -0.048 1.24 1.04 
n -0.009** 3.29 3.63 -0.024** 2.97 2.62 
nsq 0.0003** 2.36 2.96 0.0007** 2.40 2.49 
lncost -0.054** 5.48 4.64 0.032 0.87 0.70 
MN -0.085** 2.33 8.40 -0.11** 2.52 4.83 
Const 0.33** 12.35 12.45 0.45** 4.54 4.83 
       
Obs  890 890  99 99 
R2  0.13 0.13  0.18 0.18 
Adj R2  0.13   0.14  
 

The regression results in Table 4 indicate that the first log spacing—that is the difference 

between the first and second log bids—was lower, on average, for lots in which magic number 

cheating is known to have occurred. Furthermore, this difference, which is -0.085 relative to the 

full sample of auctions, is statistically significant at the 95 percent level of confidence. One finds 

similar results when comparing magic number lots to the sample of auctions in which John 

Parker served as the contract specialist. Here the difference is -0.11, and that difference is also 

significant at the 95 percent level of confidence. Consequently, magic number cheating had a 

statistically significant affect on the bid distribution, controlling the third log bid and lot 

characteristics. 

C. Auctioneer Specific Regressions Before and After April 21, 1993 

After establishing that magic number cheating had a statistically significant impact on the 

distribution of ordered bids, a natural extension would be to determine if such cheating was 

confined only to the Parker auctions. Nine contract specialists oversaw a significant number of 

auctions before April 21, 1993—the date that news of Parker-Dransfield magic number scheme 



  21  

became public.19 Additionally, only four of these nine contract specialists worked at the school 

construction authority after April 21, 1993. This fact will further limit the scope of required 

analysis.20 Table 5 counts the auctions, by contract specialist, before and after April 21, 1993.  

TABLE 5:  COUNT OF AUCTIONS WITH AT LEAST THREE BIDDERS  
BEFORE AND AFTER APRIL 21, 1993 

Specialist Before April 21, 
1993 

After April 21, 
1993 Last Auction 

CS8 54 0 Summer, 1992 
CS12 37 0 Summer, 1992 
CS14 60 59 Unknown 
CS17 55 22 1995 
CS22 41 36 Unknown 
CS27 16 0 Winter, 1991 
CS30 47 0 Summer, 1992 
CS32 55 63 Unknown 
CS37 42 0 Summer, 1992 

Parker 92 0 Approx March 1993 
 

 To begin our statistical analysis of the above contract specialists, we first run a 

regression controlling only for average affects before and after April 21, 1993 for specialists 14, 

17, 22, and 32.  These results are presented in Table 6.   

                                                 

19 There were 15 specialists before April 21, 1993, but 5 of these specialists only worked on one to five lots, and 
therefore their actions cannot be analyzed with any meaningful results expected. Additionally, one of the 15 
specialists is Mark Parker, who we already know to be guilty. Thus, 9 specialists oversaw a significant number of 
auctions both before and after April 23, 1993.    

20 In a conversation with an SCA employee during June 2000, it was stated that SCA took measures to ensure 
that magic number cheating would never again occur. Given the ease with which this form of cheating could be 
eliminated—a simple monitoring device or public recording of bids as they are opened would be sufficient—it is 
safe to assume that cheating could only have occurred before April 21, 1993. 
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TABLE 6:  CONTROLLING FOR AVERAGE AFFECTS, DEP. VAR.: LDEV21 
Variable Coefficient |t-stat| |t-White| 

lbid3 0.035** 3.44 2.96 
n -.010** 3.47 3.83 
nsq 0.0003** 2.55 3.23 
lnpest -.049** 4.89 4.11 
CS32 0.017 1.33 2.05 
CS17 0.018 0.85 1.44 
CS14 0.012 0.88 0.71 
CS22 0.018 1.05 0.17 
April21xCS32 -0.036** 1.99 1.23 
April21xCS17 0.031 1.29 0.90 
April21xCS14 0.014 0.80 0.79 
April21xCS22 0.003 0.15 1.11 
cons 0.34 12.49 12.67 
    
Obs  883  
R2  .14 .14 
Adj R2  .12  

 

In Table 6, the estimated coefficient on CS32 is negative and significant at the 5% level. 

This result indicates that the average value of ldev21 was lower in CS32 lots before April 21, 

1993 than in the rest of the sample. According to section IV C, magic number cheating reduces 

the expected value of the first spacing. Therefore, CS32 could have engaged in magic number 

cheating before the bid-rigging scandal. Next, note that interactions between April21 and the 

other CS indicator variables are negative but insignificant statistically.21 Thus, the regressions in 

Table 6 suggest only that CS32 engaged in magic number cheating. To expand upon this 

analysis, I now run regressions on auction lots particular to contract specialist 14, 17, 22, and 32 

to detect any within auctioneer sample evidence of cheating. Tables 7 and 8 contain the 

regression output. 

                                                 

21 Note that coefficients on dummies for specialists 8, 12, 27, 30, 37, and Parker are never significant.  
Additionally, the coefficients on CS8 and CS27 are negative while others are positive.  Controlling for these 
specialists and those with lots pre and post scandal will still yield evidence supporting MNC under CS32 pre-scandal 
auctions, as the coefficient on xCS32 is still negative and significant at the 5% level.   
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TABLE 7: CONTROLLING FOR THE AVERAGE EFFECT OF APRIL 21, 1993:  
CS32 AND CS17 SAMPLES, LDEV21 IS THE DEPENDENT VARIABLE 

 CS32 Sample CS17 Sample 
Variable Coef |t-stat| |t-White| Coef |t-stat| |t-White| 

lbid3 0.023 0.79 0.58 0.065* 1.69 1.59 
n -.007 0.76 0.98 -.001 0.11 0.16 
nsq 0.0001 0.31 0.43 -.00008 0.17 0.26 
lnpest -.037 1.27 0.93 -.087** 2.28 2.21 
April21 -.037* 1.81 1.93 -.037* 1.69 1.50 
cons 0.35 4.08 5.08 0.43** 3.96 3.78 
       
Obs  118   77  
R2  .14 .14  .26 .26 
Adj R2  .10   .21  

 

TABLE 8:  CONTROLLING FOR THE AVERAGE EFFECT OF APRIL 21, 1993:  
CS22 AND CS14 SAMPLES, LDEV21 IS THE DEPENDENT VARIABLE 

 CS22 Sample CS14 Sample 
Variable Coef |t-stat| |t-White| Coef |t-stat| |t-White| 
lbid3 0.037 0.86 0.81 0.047 1.25 0.85 
n -.029** 3.40 3.62 -.023* 1.93 1.83 
nsq 0.001** 3.08 3.93 0.001* 1.76 1.83 
lnpest -.057 1.33 1.20 -.057 1.55 1.04 
April21 -.002 0.09 0.09 -.014 0.63 0.57 
cons 0.51** 6.01 6.83 0.34** 3.46 3.59 
       
Obs  77   119  
R2  .37 .37  .11 .11 
Adj R2  32   .07  
 

The regressions in Table 7 indicate, albeit at the 10 percent level of significance, that 

contract specialists 17 and 32 may have engaged in magic number cheating. In particular, the 

indicator variable April21 is negative and significant at the 10 percent level in both these 

regressions. Therefore, after controlling for the third bid, the first spacing was, on average, 

smaller before April 21, 1993 for both these contract specialists, which, according to section IV 
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C, is characteristic of magic number cheating.22 In Table 9, the estimated coefficient on the 

indicator variable April21 is negative for both CS14 and CS22, but that coefficient is not 

statistically significant in either sample.  Hence, there is no evidence to suggest magic number 

cheating in auction lots monitored by CS14 or CS22.     

 

Conclusion 

This paper developed a regression model specifically designed to aid in the detection of 

magic number cheating between a bidder and auctioneers. Because the third ordered bid 

truncates the distribution from which the first spacing is drawn, an empirical analysis of magic 

number cheating need not include bids other than third ordered bid. Furthermore, a model of 

magic number cheating indicates that this form of collusion reduces the expected value of the 

first spacing, which advocates the use of a test for structural change in the detection of magic 

number cheating.  

The regression model is applied to data from New York City School Construction 

Authority auctions for years 1990 through January 1997, and the analysis suggests that two 

auctioneers (other than the auctioneer already convicted) may have been guilty of magic number 

cheating. The regression method does appear to effectively detect magic number cheating, but 

we have only 7 auction lots where this form of cheating is known to have occurred.  Therefore, 

conclusive evidence that this test is effective in unearthing guilty auctioneers is not yet available.  

                                                 

22 If the indicator variable enters the regression in Table 7 as an interaction between April21 and lbid3 (which 
would be suggested by the second characteristic of magic number cheating from section IV C, the estimated 
coefficient is negative and significant at the 11% level for the CS32 sample and at the 7% level in the CS17 sample. 
These results further indicated that magic number cheating may have taken place in CS32 and CS17 monitored 
auctions.  In the CS14 and CS22 samples, however, the coefficients on the interaction between April21 and lbid3 are 
never significant at, or near, the 10% level of confidence.  Consequently, these results are again consistent with 
those presented in tables 7 and 8. 
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The next step in assessing the regression model’s sensitivity to MNC is probably a Monte Carlo 

study aimed at the specific form of cheating described in this paper.  
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Appendix 

A.  Proof that 3 3( | ) ( | ( ))E D S y E D S yθ= ≥ =  

First, note that for ( )y yθ <  one can write 0 ( ( )) ( ) 1G y G yθ< < < , for values of θ(y) and 

y in the range [bmin, bmax]. One can now write 2 2
0 0

( ) ( ) ( ) ( )
( ) ( ( ))

g s g D s g s g D sds ds
G y G yθ

∞ ∞+ +
≤∫ ∫ , which in 

turn means that 2 2
0 0 0 0

( ) ( ) ( ) ( )
( ) ( ( ))

x xg s g D s g s g D sdsdD dsdD
G y G yθ

∞ ∞+ +
≤∫ ∫ ∫ ∫ , which implies that 

3( | )F D S y= stochastically dominates 3( | ( ))F D S yθ= in a first order sense. Therefore, by 

definition of first order stochastic dominance it follows that 3 3( | ) ( | ( ))E D S y E D S yθ= ≥ = . 

B. Derivation of conditions that satisfy 21 3 21 3( | ( )) ( | )f D S y f D S y
y y

θ∂ = ∂ =
<

∂ ∂
 

Using Leibniz’s rule for differentiation, one can derive the following equations: 

 3 21 3
21 3

0

( | ) ( | )( | )
yE D S y f D S yyf y S y D dD

y y
∂ = ∂ =

= = +
∂ ∂∫ , where 

           (B.1) 

21 3
2 3

0

( | ) 2 ( ) ( ) 4 ( ) ( )
( ) ( )

yf D S y g y g y D g x g x D dx
y G y G y

∂ = + +
= −

∂ ∫  

 

( )
3 21 3

21 3
0

( | ( )) ( | ( ))( )( ) ( ( ) | ( ))
yE D S y f D S yyy f y S y D dD

y y y

θθ θθθ θ θ∂ = ∂ =∂
= = +

∂ ∂ ∂∫ , where 

           (B.2) 

( )
21 3

0

( | ( )) 2 ( , ) ( , , )
yf D S y H y D J y D x dx

y y y

θθ θ θ∂ = ∂ ∂
= +

∂ ∂ ∂∫  
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In equation B.2, J(.) and H(.) are functions that arise due to the differentiation of f21(.).  

Note that every term of equation B.2 is a multiple of ( )y
y

θ∂
∂

.  Therefore, as ( )y
y

θ∂
∂

 tends to zero, 

so too will 3( | ( ))E D S y
y

θ∂ =
∂

.  Furthermore, the dishonest bidder, and therefore the auctioneer, 

will find cheating most profitable if ( )y
y

θ∂
∂

 is close to zero. For example, if the realization of the 

third bid were to increase, the collusive parties would lose money were they to increase the 

distance between the collusive bid and the low honest bid. Therefore, one would expect the 

marginal effect of the 3rd bid on the first spacing be smaller in instances of MNC than in honest 

auctions. 

C. Expectation of the First Spacing, Conditioned on the Third Bid 

1. Uniformly Distributed Bids 

Recall the density of the first spacing, conditioned on the third bid.  This density was 

shown to be  

21 3 2
0

2( | ) ( ) ( )
( )

y

f D S y g s g D s ds
G y

= = +∫       (C.1) 

First, suppose the bids are independent draws from the uniform distribution on [a,b].  In 

this scenario, 1( )g b
b a

=
−

, and ( ) x aG b
b a
−

=
−

  for values of b in the interval [a,b].  Substituting 

the density and distribution into equation A.1, we have the following: 

2 2

21 3
0

1( | ) 2
yb af D S y ds

y a b a
⎛ ⎞− ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠

∫       (C.2) 

Solving the integral in equation C.2, we then find that the conditional density function 

reduces to 
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2 2

21 3 2

1 2( | ) 2
( )

b a yf D S y y
y a b a y a

⎛ ⎞− ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− − −⎝ ⎠⎝ ⎠
   

Applying the formula for the conditional expected value of a random variable, it is 

evident that the expected value of the first spacing conditioned on the third bid is given by 

21 3 21 3
0

( | ) ( | )
y

E D S y Df D S y dD= = =∫       (C.3) 

Inserting the formula for the conditional density of the first spacing given above, we can 

then finish the algebra as follows:      

3

21 3 2 2
0 0

2( | )
( ) ( )

y y y yDf D S y dD D dD
y a y a

⎛ ⎞
= = =⎜ ⎟− −⎝ ⎠

∫ ∫     (C.4) 

Thus, if the underlying bid function is uniform with a lower bound of 0, then the 

relationship between the first spacing and the third bid in a least squares regression equation will 

be linear. Interestingly enough, the conditional density does not depend on the upper bound, b.  

This makes perfect sense after considering what we have done in the above exercise—namely, to 

truncate the underlying density at a value less than the upper bound. Therefore, the upper bound 

of the distribution adds no new information to the conditional density.   

2. Exponentially Distributed Bids 

Next consider the scenario where bids are distributed exponentially, so that  

( ) bg b e−=  

( ) 1 bG b e−= −  

Substituting these equations into C.1 above yields:  

21 3 2
0

2( | )
(1 )

y
s s D

yf D S y e e ds
e

− − −
−= =

− ∫      (C.5) 
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For notational convenience, let 2

2
(1 )ye

ϕ −=
−

.  Equation C.5 reduces as follows: 

2
21 3

0

( | )
y

s Df D S y e dsϕ − −= = ∫  

2
21 3

0

1( | ) 2
2

y
s Df D S y e dsϕ − −= = − −∫  

2
21 3

1( | ) ( )
2

y D Df D S y e eϕ − − −= = − −  

2
21 3

1( | ) ( 1)
2

y Df D S y e eϕ − −= = − −  

2

21 3 2

(1 )( | )
(1 )

y D

y

e ef D S y
e

− −

−

−
= =

−
, after substituting back for φ.  We can now take advantage 

of the difference of squares in the numerator to complete the algebra and obtain equation C.6 

below. 

21 3
(1 )( | )

1

y D

y

e ef D S y
e

− −

−

−
= =

−
       (C.6) 

After having derived equation C.6, we can substitute C.6 into equation C.3 above to 

obtain equation C.7.  Solving C.7 will then yield the expectation of the first spacing given the 

third bid, when bids are distributed exponentially. These calculations are provided below, and 

result in equation C.8. 

21 3
0

(1 )( | )
1

y y D

y

e eE D S y D dD
e

− −

−

+
= =

−∫       (C.7) 

21 3
0

1( | )
1

yy
D

y

eE D S y De dD
e

−
−

−

⎛ ⎞+
= = ⎜ ⎟−⎝ ⎠

∫  
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21 3
1( | ) (1 )
1

y
y y

y

eE D S y ye e
e

−
− −

−

⎛ ⎞+
= = − −⎜ ⎟−⎝ ⎠

     (C.8) 

The last step in reaching equation C.8 is attained through integration by parts.  
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