Exercise 16

Figure 5.13. A Bayesian belief network for detecting heart disease and heartburn in patients.

Rules

$\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$, when A and B are independent
$\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
(a)

```
P(HD = Yes)
= P(HD=Yes | E=Yes, D=Healthy) P(E=Yes) P(D=Healthy) +
    P(HD=Yes | E=Yes, D=Unhealthy) P(E=Yes) P(D=Unhealthy) +
    P(HD=Yes | E=No, D=Healthy) P(E=No) P(D=Healthy) +
    P(HD=Yes | E=No, D=Unhealthy) P(E=No) P(D=Unhealthy)
= (0.25)(0.7)(0.25) + (0.45)(0.7)(0.75) + (0.55)(0.3)(0.25) + (0.75)(0.3)(0.75)
= 0.04375 + 0.23625 + 0.04125 + 0.16875
= 0.49
```

P (HD=Yes | $\mathrm{D}=$ Healthy $)$
$=P(H D=Y e s \mid D=$ Healthy, $\mathrm{E}=$ Yes $) \mathrm{P}(\mathrm{E}=$ Yes $)+\mathrm{P}(\mathrm{HD}=$ Yes $\mid \mathrm{D}=$ Healthy, $\mathrm{E}=\mathrm{No}) \mathrm{P}(\mathrm{E}=\mathrm{No})$
$=0.25(0.7)+0.55$ (0.3)
$=0.34$
(b)

Assumption of BBN: the probability of A is independent of non-descendants if the A's parents are known.

```
\(\mathrm{P}(\mathrm{BP}=\) High \()\)
\(=\mathrm{P}(\mathrm{BP}=\) High \(\mid \mathrm{HD}=\) Yes \() \mathrm{P}(\mathrm{HD}=\) Yes \()+\mathrm{P}(\mathrm{BP}=\mathrm{High} \mid \mathrm{HD}=\mathrm{No}) \mathrm{P}(\mathrm{HD}=\mathrm{No})\)
\(=0.85\) (0.49) +0.2 (0.51)
\(=0.5185\)
\(\mathrm{P}(\mathrm{Hb}=\mathrm{Yes})\)
\(=\mathrm{P}(\mathrm{Hb}=\mathrm{Yes} \mid \mathrm{D}=\) Healthy \() \mathrm{P}(\mathrm{D}=\) Healthy \()+\mathrm{P}(\mathrm{Hb}=\) Yes \(\mid \mathrm{D}=\) Unhealthy \() \mathrm{P}(\mathrm{D}=\) Unhealthy \()\)
\(=0.2\) (0.25) + 0.85 (0.75)
\(=0.6875\)
\(\mathrm{P}(\mathrm{Hb}=\mathrm{No})=1-0.6875=0.3125\)
\(\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{Yes})\)
\(=\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{Yes}, \mathrm{Hb}=\mathrm{Yes}) \mathrm{P}(\mathrm{Hb}=\mathrm{Yes})+\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{Yes}, \mathrm{Hb}=\mathrm{No}) \mathrm{P}(\mathrm{Hb}=\mathrm{No})\)
\(=0.8(0.6875)+0.6(0.3125)\)
\(=0.7375\)
P (CP=Y)
\(=\mathrm{P}(\mathrm{CP}=\mathrm{Y} \mid \mathrm{HD}=\mathrm{Y}, \mathrm{Hb}=\mathrm{Y}) \mathrm{P}(\mathrm{HD}=\mathrm{Y}, \mathrm{Hb}=\mathrm{Y})+\mathrm{P}(\mathrm{CP}=\mathrm{Y} \mid \mathrm{HD}=\mathrm{Y}, \mathrm{Hb}=\mathrm{N}) \mathrm{P}(\mathrm{HD}=\mathrm{Y}, \mathrm{Hb}=\mathrm{N})+\)
    \(P(C P=Y \mid H D=N, H b=Y) P(H D=N, H b=Y)+P(C P=Y \mid H D=N, H b=N) P(H D=N, H b=N)\)
\(=0.51\)
P (HD = Yes | BP = High, CP = Yes)
\(=\mathrm{P}(\mathrm{HD}=\) Yes, \(\mathrm{BP}=\) High, \(\mathrm{CP}=\) Yes \() / \mathrm{P}(\mathrm{BP}=\) High, \(\mathrm{CP}=\) Yes \()\)
\(=\mathrm{P}(\mathrm{BP}=\) High \(\mid \mathrm{HD}=\) Yes, \(\mathrm{GP}=\) Yes \() \mathrm{P}(\mathrm{HD}=\) Yes, \(\mathrm{CP}=\) Yes \() / \mathrm{P}(\mathrm{BP}=\) High, \(\mathrm{CP}=\) Yes \()\)
\(=\mathrm{P}(\mathrm{BP}=\) High \(\mid \mathrm{HD}=\mathrm{Yes}) \mathrm{P}(\mathrm{CP}=\) Yes \(\mid \mathrm{HD}=\mathrm{Yes}) \mathrm{P}(\mathrm{HD}=\mathrm{Yes}) / \mathrm{P}(\mathrm{BP}=\) High \() \mathrm{P}(\mathrm{CP}=\) Yes \()\)
\(=0.85(0.7375)(0.49) / 0.5185(0.51)\)
\(=0.30\)
```

CP is non-descendant of BP and BP's parent is known, therefore BP is independent of CP.

