Exercise \#17

We have given,
min sup = 3
Each itemcan be represented by an integer (i.e. 4 bytes)
Each lock can be represented by an integer (i.e. 4 bytes)
For the fixed Locking approach, the number of locks used is 8.
The size of a cache block is 64 bytes.
We have given below transactions,
T1: $\{P 1, P 2, P 3, P 5, P 7\}$
T2: $\{P 1, P 4, P 5, P 6, P 7\}$
T3: $\{P 1, P 4, P 6\}$
T4: $\{P 1, P 4, P 5, P 6, P 7\}$
T5: $\{P 3, P 5\}$
T6: $\{P 1, P 2, P 3, P 7\}$
T7: $\{P 2, P 7\}$
T8: $\{P 1, P 2, P 3, P 4, P 6, P 7\}$

Below table shows discovery of frequent item set S.

Ck - Size 1 (7)	Ck - Size 2 (21)	Ck - Size 3 (9)	Ck - Size 4 (2)
P1 $=6$	P1, P2 = 3	P1, P2, P3 = 3	P1, P2, P3, P7 = 3
P2 $=4$	P1, P3 $=3$	P1, P2, P7 = 3	P1, P4, P6, P7 $=3$
P3 $=4$	P1, P4 $=4$	P1, P3, P7 $=3$	
P4 $=4$	P1, P5 = 3	P1, P4, P6 = 4	
$P 5=4$	P1, P6 = 4	P1, P4, P7 = 3	
P6 = 4	P1, P7 $=5$	P1, P5, P7 = 3	
P7 $=6$	P2, P3 $=3$	P1, P6, P7 = 3	
	P2, P4 $=1$	P2, P3, P7 $=3$	
	P2, P5 = 1	P4, P6, P7 $=3$	
	P2, P6 = 1		
	P2, P7 = 4		
	P3, P4 $=1$		
	P3, P5 = 1		
	P3, P6 = 1		
	P3, P7 = 3		
	P4, P5 $=2$		
	P4, P6 = 4		
	P4, P7 $=3$		
	P5, P6 = 2		
	P5, P7 = 3		
	P6, P7 $=3$		

$S=$ Size of Reduction object=4** of Reduction Elements
$T=\#$ of Threads (Processors).
Number of threads are not given so, I have assuming $T=4$,
$r=\#$ of Elements

1. In Ck with Size 1, we have 7 Reduction Element in one Reduction Object;

- Full Replication = S * T

Where $\mathrm{S}=7 * 4=28$ and $\mathrm{T}=4$
S*T = 28*4 = 112 Bytes

- Full Locking and Optimized Full Locking = 2 * S

Where $5=7 * 4=28$
$2 * 5=2 * 28=56$ Bytes

- Fixed Locking and Cache-Sensitive Locking $=(1+1 / r)$ * S Where $S=7 * 4=28$ and $r=7$ $(1+1 / r) * S=(1+1 / 7) * 28=32$ Bytes

2. In Ck with Size 2, we have 21 Reduction Element in one Reduction

Object: (Bold figures are correction from my previous submi ssion)

- Full Replication = S * T

Where $S=21 * 4=84$ and $T=4$
S*T = 84*4 = 336 Bytes

- Full Locking and Optimized Full Locking = 2 * S

Where $\mathrm{S}=21 * 4=84$
$2 * 5=2 * 84=168$ Bytes

- Fixed Locking and Cache-Sensitive Locking = (1 + 1/r) * S Where $S=21 * 4=84$ and $r=21$ $(1+1 / r)^{*} S=(1+1 / 21) * 84=88$ Bytes

3. In Ck with Size 3, we have 9 Reduction Element in one Reduction Object:

- Full Replication = S * T

Where $S=9 * 4=36$ and $T=4$
S*T = 36*4 = 144 Bytes

- Full Locking and Optimized Full Locking = 2 * S

Where $5=9 * 4=36$
2*S $=2 * 36=72$ Bytes

- Fixed Locking and Cache-Sensitive Locking =(1 + 1/r) * S

Where $S=9 * 4=36$ and $r=9$
$(1+1 / r) * S=(1+1 / 9) * 36=40$ Bytes
4. In Ck with Size 4, we have 2 Reduction Element in one Reduction

Object:

- Full Replication $=5$ * T

Where $S=2 * 4=8$ and $T=4$
S*T $=8 * 4=32$ Bytes

- Full Locking and Optimized Full Locking = 2 * S

Where $\mathrm{S}=2 * 4=8$
$2 * S=2 * 8=16$ Bytes

- Fixed Locking and Cache-Sensitive Locking =(1 + 1/r) * S Where $S=2 * 4=8$ and $r=2$
$(1+1 / r) * S=(1+1 / 2) * 8=12$ Bytes

