Solution to exercise 7:
7. Use the dataset in Exercise 6. Let min_sup=3 and the minimum confidence min_conf=70\%. Use the Apriori Algorithm to discover all the strong association rules. Note that in this case, a strong association rule A->B tells us that if a user visits certain set of pages A, the user has a high likelihood to visit the set of pages B.

T1: $\{P 1, P 2, P 3, P 5, P 7\}$
T2: $\{\mathrm{P} 1, \mathrm{P} 4, \mathrm{P} 5, \mathrm{P} 6, \mathrm{P} 7\}$
T3: \{P1,P4,P6\}
T4: \{P1,P4,P5,P6,P7\}
T5: $\{P 3, \mathrm{P} 5\}$
T6: $\{P 1, P 2, P 3, P 7\}$
T7: $\{\mathrm{P} 2, \mathrm{P} 7\}$
T8: $\{P 1, P 2, P 3, P 4, P 6, P 7\}$

Transaction	Itemsets
T1	$\{1,2,3,5,7\}$
T2	$\{1,4,5,6,7\}$
T3	$\{1,4,6\}$
T4	$\{1,4,5,6,7\}$
T5	$\{3,5\}$
T6	$\{1,2,3,7\}$
T7	$\{2,7\}$
T8	$\{1,2,3,4,6,7\}$

Step1: generating 1 Item set frequent pattern

1-Itemset	Sup_count	Scan the data once to get the count of each item and remove the items that do not meet min_sup
$\{1\}$	6	
$\{2\}$	4	
$\{3\}$	4	
$\{4\}$	4	
$\{5\}$	4	
$\{6\}$	4	
$\{7\}$	6	

C1

1-Itemset	Sup_count
$\{1\}$	6
$\{2\}$	4
$\{3\}$	4
$\{4\}$	4
$\{5\}$	4
$\{6\}$	4
$\{7\}$	6

L1

The set of frequent 1-itemsets, L1, consists of the candidate 1-itemsets satisfying minimum support.
In the first iteration of the algorithm, each item is a member of the set of candidate.

Generating 2-itemset Frequent Pattern

$2-$ Itemsets	Sup_Count
$\{1,2\}$	3
$\{1,3\}$	3
$\{1,4\}$	4
$\{1,5\}$	3
$\{1,6\}$	4
$\{1,7\}$	5
$\{2,3\}$	3
$\{2,4\}$	1
$\{2,5\}$	1
$\{2,6\}$	1
$\{2,7\}$	4
$\{3,4\}$	1
$\{3,5\}$	2
$\{3,6\}$	1
$\{3,7\}$	3
$\{4,5\}$	2
$\{4,6\}$	4
$\{4,7\}$	3
$\{5,6\}$	2
$\{5,7\}$	3
$\{6,7\}$	3

2 -Itemsets	Sup_count
$\{1,2\}$	3
$\{1,3\}$	3
$\{1,4\}$	4
$\{1,5\}$	3
$\{1,6\}$	4
$\{1,7\}$	5
$\{2,3\}$	3
$\{2,7\}$	4
$\{3,7\}$	3
$\{4,6\}$	4
$\{4,7\}$	3
$\{5,7\}$	3
$\{6,7\}$	3

C2 (L1 X L1)

Step 3: Generating 3-item frequent set

From L2 to C3

3 -itemsets	Sup_count
$\{1,2,3\}$	3
$\{1,2,7\}$	3
$\{1,3,7\}$	3
$\{1,4,6\}$	4
$\{1,4,7\}$	3
$\{1,5,7\}$	3
$\{1,6,7\}$	3
$\{2,3,7\}$	3
$\{4,6,7\}$	3

Reduce the size of C3 using
the apriori property (any k-

1) subset of a candidate
must be frequent. Scan the
dataset to get the support
count

3 -Itemsets	Sup_count
$\{1,2,3\}$	3
$\{1,2,7\}$	3
$\{1,3,7\}$	3
$\{1,4,6\}$	4
$\{1,4,7\}$	3
$\{1,5,7\}$	3
$\{1,6,7\}$	3
$\{2,3,7\}$	3
$\{4,6,7\}$	3

L3

C3 (L2 XL2)

Step 4: generating 4 item frequent sets:

4-itemsets	Sup_count
$\{1,2,3,7\}$	3
$\{1,4,6,7\}$	3

C4
$C 5=\phi$ since the join of L4 and L4 doesn't generate any 5-itemsets and the algorithm terminates having found all the frequent item sets

These frequent itemsets are used to generate strong rules which satisfy both minimum support (3) and minimum confidence(70\%).

Generating Association Rules from Frequent item sets
For each frequent itemset I, generate all nonempty subsets of I. For every nonempty subset of s of I, output rule $s=>(l-s)$ if conf($s=>(l-s))>=$ min_conf.
The frequent itemsets in this case are $\{1,2,3,7\}$ and $\{1,4,6,7\}$
For itemset $\{1,2,3,7\}$ all the non empty subsets are
$\{1\},\{2\},\{3\},\{7\},\{1,2\},\{1,3\},\{1,7\},\{2,3\},\{2,7\},\{3,7\}\{1,2,3\},\{1,2,7\},\{2,3,7\},\{1,3,7\}$
Let's take $I=\{1,2,3,7\}$
Min confidence $=70 \%$

Rule	s=>(l-s)	Confidence	Selected/Rejected
R1	$1=>(2,3,7)$	sc\{1,2,3,7\}/sc\{1\} $=3 / 6=50 \%$	Rejected
R2	$2=>(1,3,7)$	sc $\{1,2,3,7\} / \mathrm{sc}\{2\}=3 / 4=75 \%$	Selected
R3	$3=>(1,2,7)$	sc $\{1,2,3,7\} / \mathrm{sc}\{3\}=3 / 4=75 \%$	Selected
R4	$7=>(1,2,3)$	sc\{1,2,3,7\}/sc\{7\} =3/6 =50\%	Rejected
R5	$(1,2)=>(3,7)$	sc\{1,2,3,7\}/sc\{1,2\} =3/3 =100\%	Selected
R6	$(1,3)=>(2,7)$	sc $\{1,2,3,7\} / \mathrm{sc}\{1,3\}=3 / 3=100 \%$	Selected
R7	$(1,7)=>(2,3)$	sc\{1,2,3,7\}/sc\{1,7\}=3/5 =60\%	Rejected
R8	$(2,3)=>(1,7)$	sc\{1,2,3,7\}/sc\{2,3\}=3/3=100\%	Selected
R9	$(2,7)=>(1,3)$	sc\{1,2,3,7\}/sc\{2,7\} $=3 / 4=75 \%$	Selected
R10	$(3,7)=>(1,2)$	sc\{1,2,3,7\}/sc\{3,7\}=3/3=100\%	Selected
R11	$(1,2,3)=>7$	sc\{1,2,3,7\}/sc\{1,2,3\} \}=3/3 =100\%	Selected
R12	$(1,2,7)=>3$	sc\{1,2,3,7\}/sc\{1,2,7\}\}=3/3=100\%	Selected
R13	$(1,3,7)=>2$	sc\{1,2,3,7\}/sc\{1,3,7\}\}=3/3 =100\%	Selected
R14	$(2,3,7)=>1$	sc\{1,2,3,7\}/sc\{2,3,7\}\}=3/3=100\%	Selected

In this way we have found 11 strong rules

For itemset $\{1,4,6,7\}$ all the non empty subsets are
$\{1\},\{4\},\{6\},\{7\},\{1,4\},\{1,6\},\{1,7\},\{4,6\},\{4,7\},\{6,7\}\{1,4,6\},\{1,4,7\},\{1,6,7\},\{4,6,7\}$
Let's take $\mathrm{I}=\{1,4,6,7\}$

Rule	s=>(l-s)	Confidence	Selected/Rejected
R1	$1=>(4,6,7)$	sc $\{1,4,6,7\} / \mathrm{sc}\{1\}=3 / 6=50 \%$	Rejected
R2	$4=>(1,6,7)$	sc $\{1,4,6,7\} / \mathrm{sc}\{4\}=3 / 4=75 \%$	Selected
R3	$6=>(1,4,7)$	sc\{1,4,6,7\}/sc\{6\} =3/4=75\%	Selected
R4	$7=>(1,4,6)$	sc\{1,4,6,7\}/sc\{7\} =3/6 =50\%	Rejected
R5	$(1,4)=>(6,7)$	sc\{1,4,6,7\}/sc\{1,4\} $=3 / 4=75 \%$	Selected
R6	$(1,6)=>(4,7)$	sc $\{1,4,6,7\} / \mathrm{sc}\{1,6\}=3 / 4=75 \%$	Selected
R7	$(1,7)=>(4,6)$	sc\{1,4,6,7\}/sc\{1,7\}=3/5=60\%	Rejected
R8	$(4,6)=>(1,7)$	sc\{1,4,6,7\}/sc\{4,6\}=3/4=75\%	Selected
R9	$(4,7)=>(1,6)$	sc $\{1,4,6,7\} / \mathrm{sc}\{4,7\}=3 / 3=100 \%$	Selected
R10	$(6,7)=>(1,4)$	sc\{1,4,6,7\}/sc\{6,7\}=3/3 =100\%	Selected
R11	$(1,4,6)=>7$	sc\{1,4,6,7\}/sc\{1,4,6\} \}=3/4 =75\%	Selected
R12	$(1,4,7)=>6$	sc\{1,4,6,7\}/sc\{1,4,7\}\}=3/3=100\%	Selected
R13	$(1,6,7)=>4$	sc\{1,4,6,7\}/sc\{1,6,7\}\}=3/3=100\%	Selected
R14	$(4,6,7)=>1$	sc\{1,4,6,7\}/sc\{4,6,7\}\}=3/3 = 100%	Selected

In this way we have found, 11 strong rules.
There will be total of 22 strong rules.

