Software Design
Document

for

Robosub

Version 1.0 approved

Prepared by Carl Solli, Christian Castillo, Ashkan Aledavoud, Robin Romero, Alan Chan,
Leslie Araujo, Edwin Tran, Bryan Sanchez, Jeanie Jeon, Daniel Valadez

May 13th 2022



Table of Contents

Revision History

1. Introduction
1.1 Purpose
1.2 Intended Audience and Reading Suggestions
1.3 System Overview

2. Design Considerations
2.1 Assumptions and Dependencies
2.2 General Constraints
2.3 Goals and Guidelines
2.4 Development Methods

3. Architectural Strategies
4. System Architecture

5. Policies and Tactics
5.1 Choice of which specific products used
5.2 Plans for ensuring requirements traceability
5.3 Hierarchical organization
5.4 Software Implementation Procedure

6. Detailed System Design
6.1 Mission Planning
6.1.1 Responsibilities
6.1.2 Constraints
6.1.3 Composition
6.1.4 Uses/Interactions
6.1.5 Resources
6.1.6 Interface/Exports
6.2 Controls & Sensors
6.2.1 Responsibilities
6.2.2 Constraints
6.2.3 Composition
6.2.4 Uses/Interactions
6.2.5 Resources
6.2.6 Interface/Exports
6.3 Computer Vision
6.3.1 Responsibilities
6.3.2 Constraints
6.3.3 Composition
6.3.4 Uses/Interactions
6.3.5 Resources
6.3.6 Interface/Exports

o O 0 0 00 ™ DO OO O

-_ =
-—

[ T G G 4
P W WLWW

N U U A U O U U QA QU U QI QU G QI G G G §
0 00 00 00O N NNNO O O O OO G101 O 01 01 O 01 On



6.4 User Interface
6.4.1 Responsibilities
6.4.2 Constraints
6.4.3 Composition
6.4.4 Uses/Interactions
6.4.5 Resources
6.4.6 Interface/Exports
6.5 Website
6.5.1 Responsibilities
6.5.2 Constraints
6.5.3 Composition
6.5.4 Uses/Interactions
6.5.5 Resources
6.5.6 Interface/Exports

7. Detailed Lower level Component Design

7.1 state zero.py
7.1.1 Classification
7.1.2 Processing Narrative (PSPEC)
7.1.3 Interface Description
7.1.4 Processing Detail
7.1.4.1 Design Class Hierarchy
7.1.4.2 Restrictions/Limitations
7.1.4.3 Performance Issues

7.2 execute_gate.py
7.2.1 Classification
7.2.2 Processing Narrative (PSPEC)
7.2.3 Interface Description
7.2.4 Processing Detail

7.3 execute_buoy.py
7.3.1 Classification
7.3.2 Processing Narrative (PSPEC)
7.3.3 Interface Description
7.3.4 Processing Detail

7.4 execute_bin.py
7.4.1 Classification
7.4.2 Processing Narrative (PSPEC)
7.4.3 Interface Description
7.4.4 Processing Detail

7.5 execute_torpedo.py
7.5.1 Classification
7.5.2 Processing Narrative (PSPEC)
7.5.3 Interface Description
7.5.4 Processing Detail

7.6 execute_dropper.py

19
19
19
19
19
19
19
20
20
20
20
21
21
21

22
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
25
26
26



7.6.1 Classification

7.6.2 Processing Narrative (PSPEC)
7.6.3 Interface Description

7.6.4 Processing Detail

8. Database Design

9. User Interface
9.1 Overview of User Interface
9.2 Screen Frameworks or Images
9.3 User Interface Flow Model

10. Requirements Validation and Verification
10.1 Mission Planning
10.2 Navigation
10.3 Controls

11. Glossary

12. References

26
26
26
26

27

28
28
28
28

29
29
29
30

31
32



Revision History

Name

Date

Reason For Changes

Version




1. Introduction

1.1 Purpose

The purpose of this document is to explain the software in development for the AUV project
that will be competing in the 2022 RoboSub competition.

The mission planning purpose is to design and implement the overall software of the AUV by
continuously receiving data from all the other sub-teams and making decisions based on the
data and its current state.

Controls will be focusing on the AUV’s movement by receiving instructions from the mission
planning sub-team and determining how to accomplish that given instruction. The movement
will be controlled by using eight thrusters, where four thrusters will be used for vertical
movement and to balance the sub and the other four thrusters will be used for horizontal
movement. The pitch axis will be used to move the sub in a forward and backwards rotation
about the side to side axis. The roll axis will rotate the AUV about the axis running through
the nose to the tail. Yaw is the rotation of the AUV about the vertical axis.

The computer vision portion is designed to recognize specific images and objects in the
underwater environment that are relevant to the competition. It will be used to detect and
send data about objects and images to the mission planning system so it can be used
alongside the rest of the data that is being collected by the other sub-teams.

This document should guide any future developers and users to the product and give them the
opportunity to modify and expand on the AUV.

1.2 Intended Audience and Reading Suggestions

This document is intended for the future developers and users that wish to continue the work
done by the 2021-2022 Senior Design Team. It is recommended that future developers and
users go through the first five sections to get a better understanding of the product. The most
relevant section for future developers is section six since it goes further into detail on what
each sub-team should focus on and accomplish.

1.3 System Overview

The software system is split up into five parts (Mission Planning, Computer Vision, Controls,
Sensors, and Website) where each part has its own specific task and responsibility.

1.3.1 Mission Planning



Design and implement the overall software of the AUV using SMACH to complete
each task provided by the robosub competition. Mission planning also gathers every
sub-team’s data to make it possible for the AUV to maneuver and complete its goals.

1.3.2 Computer Vision
Design and train a computer vision system that has the ability to recognize a desired
image or object that is in an underwater environment. The desired image or objects
are set by the robosub competition.

1.3.3 Controls

Design and test a control system, with the use of eight thrusters, to allow six degrees
of movement with precision and accuracy.

1.3.4 Sensors
Implements sensor data acquisition and processing using arduino and serial
connections where data will be retrieved from the IMU sensor, DVL sensor,
Barometer, Sonar, and Hydrophones and sent to mission planning to be used to
complete the desired task.

1.3.5 Website
Design a website to document the progress of this year’s AUVs, as well as provide a

resource for anyone interested in joining the competition this year as a member of the
RoboSub Club Design team.



2. Design Considerations

2.1 Assumptions and Dependencies

We’re using Linux 18.04 for our OS on the Jetson TX2. Together with ROS Melodic for
breaking our code into different components. Python 2.7 is also used.

Technologies:

- Linux Ubuntu 18.04
- ROS Melodic
- Python 2.7

Factors that may affect the requirements in the document are:

- The use of other Ubuntu versions
- Another version of ROS
- A programming languages other than Python and C++

2.2 General Constraints

Due to the ROS version on the platform, ROS nodes are restricted to be written in one of the
following languages:

- Python 2.7

- C++

Any code to be run on an Arduino must be written in the Arduino language.

Main safety requirements are to not damage any components of the AUV as well as any item
involved in the execution of competition tasks. Additionally,we must not cause any harm to
the divers observing the competition in the water.

The software must be able to run on a Jetson TX2 and an Arduino Mega.

2.3 Goals and Guidelines

The goal of the software is to operate the AUV to complete the tasks of the Robosub
competition. We also have a goal to design the software in a way that allows another team to
continue work on the AUV instead of starting over from square one.

Mission Planning - Users will be able to build upon existing state machines as well as adding
new state machines if needed. These states are independent,sharing utility functions and
states



Controls - Designing controls code to be tested when the hardware is completed in 2021

Navigations - Test sensors independently and create packages dedicated to each individual
sensor

Computer Vision - Design the workflow for labeling and training a computer vision system
for use on a yearly basis. Each of these goals will be focused on the documentation and
commenting of code with the expectation of reducing the time to onboard a new senior
design team.

2.4 Development Methods

We’ve been using an Agile Development philosophy where we’ve adapted some of the
methodologies that Scrum uses. Scrum is a framework that helps teams work together.

The parts of Scrum we’ve implemented so far is:
Backlog - We keep track of the tasks we need to do in a backlog. We’ve been using Github
and Github Projects for this. Each sub team leader is in charge of managing the team's
backlog.
Standup Meeting - We meet twice a week. In the meeting every team member goes over:

- What they have been working on

- What they are planning on working on going forward

- What issues they have been running into



3. Architectural Strategies

The software has been split into different components with the help of ROS. In ROS
terminology these components are called packages. This has allowed us to separate the code
of the different functions of the Robosub allowing for a well organized structure and that each
package has responsibility for just one part of the overall system. The different packages we
have is:

- Mission Planning

- Controls & Sensors

- Computer Vision

- Camera

- Guidance Navigation Control

Having the code in different components makes it easier to reuse the code, and makes it
easier for each team to work on their part without affecting other parts of the system.

In addition the SMACH system was separated into various sub systems, each with the goal of
completing a single task, allowing for faster development, debugging and testing times, as
well as readability of code for similar tasks that reappear in the competition. An error
package was also implemented to simplify monitoring of the various functionalities. This
package can be expanded as functionality and requirements change.



4. System Architecture

User Interface Sensing and Actuation AN

4 Display sensor data Sensor Interface

i

-—3 Logs t  Controls Interface
DvL

Video Display

Parameter Calibrations Barometer

Thrusters

Mapping

Guidance Navigation
Control N Control Command
Path Planning

Balldrop

Torpedo

ek

/

Mission Planning Computer Vision Camera
Deoiding Task Image Processing Image Filtering

Target

Task / Desired

Wtio Image Recognition Camera Interface

This 1s how we’ve separated our ROS packages. We have a total of 6 different components
working together. The blue squares are packages, the purple circles are ROS Topics. On the
right, we have green squares which are sensors, and brown squares for controls.

User Interface - In the user interface we display sensor data, and logs. The user interface is
just for testing and debugging, the AUV will operate without it in the competition. It takes in
data from the Sensing and Actuation package as well as displaying the images from the
Camera.

Sensing and Actuation - This package handles all the sensors and controls. The package will
have nodes for the connecting to the different sensors and it will publish this data from the
sensors, so the rest of the system can use that data. It will also send commands to the
controls.

Guidance Navigation Control - When Mission Planning has decided on a task, it will
communicate with this Guidance Navigation Control package, and this package will translate
the commands into commands that will execute what the Robosub wants to do.

Mission Planning - Mission Planning uses SMACH to create state machines that allow the
AUV to perform tasks given to it. The state machines work alongside other subsystems such
as Computer Vision to achieve the various tasks outlined by the competition. SMACH states
are subroutines that are developed to perform a specialized task. This will usually lead to an
execution state that triggers a transition to a new state.



Computer Vision - This package will take in the data / images from the Camera and process
these images. Its job is to find out what we’re looking at, and where in the frame this object
is. Then publish this data for the Mission Planning to use.

Camera - This is for the camera, it will publish the images the camera takes.



5. Policies and Tactics

5.1 Choice of which specific products used
Arduino IDE

ROS - http://wiki.ros.org/

Arduino - https://www.arduino.cc/

SMACH - http://wiki.ros.org/smach/Documentation

Ubuntu 18.04.5 - https://releases.ubuntu.com/18.04.5/
Ubuntu 20.04.2.0 - https://releases.ubuntu.com/20.04/

VMware Workstation -

https://my.vmware.com/en/web/vmware/downloads/details?downloadGroup=PLLAYER 1556
&productld=800&rPId=47861

5.2 Plans for ensuring requirements traceability

Traceability is enforced by requiring appropriate readme documents that explain how to
utilize the different programs the AUV uses as well as the tasks that the AUV has to
perform using those programs.

5.3 Hierarchical organization

The Software shall follow the following organization.

Each package will be located in its own directory and contain the following:

Readme File containing description of package
- Software requirements
- Interface specification
- Hardware description (if applicable)
- Start script named start.py (or c++ file where appropriate)
- Required libraries (for hardware components)
- Scripts (or src) directory containing all software.

- Design Images of software (where appropriate)


http://wiki.ros.org/
https://www.arduino.cc/
http://wiki.ros.org/smach/Documentation
https://my.vmware.com/en/web/vmware/downloads/details?downloadGroup=PLAYER1556&productId=800&rPId=47861
https://my.vmware.com/en/web/vmware/downloads/details?downloadGroup=PLAYER1556&productId=800&rPId=47861

5.4 Software Implementation Procedure

The software must be cloned from the repository in the catkin workspace folder created by
ROS

Example structure:
Catkin_ws
-Software Directory
-src
The software directory folder must be renamed to src, removing the existing src directory.
To compile the following command shall be run in the terminal:

catkin_make



6. Detailed System Design

6.1 Mission Planning

6.1.1

Responsibilities

The main responsibility of mission planning is to design and implement the overall
software of the AUV to complete each task of the competition using SMACH. In
addition, mission planning has to publish data to the controls component based on the
current state of the AUV to maneuver throughout the competition.

6.1.2

6.1.3

6.1.4

6.1.5

6.1.6

Constraints

SMACH will fall short as the scheduling of the task becomes less structured
SMACH is not meant to be used as a state machine for low-level systems that
require high efficiency, SMACH is a task-level architecture.

The state machines perform one task at a time, unless it is designed to run in
concurrence

Composition

ROS
SMACH
SMACH Viewer

Uses/Interactions

Define the current state of the AUV

Subscribe to receive data from other components of the AUV
Publish data to controls component of the AUV

Define transition between sub-states of a state machine
Define transition between different state machines

Pass user data between different state machines

Resources

SMACH — A ROS-independent Python library to build hierarchical state
machines (http://wiki.ros.org/smach/Documentation)
SMACH Viewer — GUI that shows the state of hierarchical SMACH state

machines. (http://wiki.ros.org/smach_viewer#Documentation)

Interface/Exports

Mission planning only interfaces through other systems that directly interact
with the hardware and does not directly interface with any hardware.
Mission planning shall interact with the user interface to provide the current
state of the AUV

Mission planning shall interact with controls to provide instructions to
maneuver the AUV


http://wiki.ros.org/smach/Documentation
http://wiki.ros.org/smach_viewer#Documentation

6.2 Controls & Sensors
6.2.1 Responsibilities

The controls and sensors component are in charge of interfacing with the controls and
the sensors of the robosub. The sensors group will receive data from the sensors on
the AUV and then send this data to the mission planning group to determine the
AUV’s next action. Commands will then be received from the mission planning node
to execute the action needed.

6.2.2 Constraints

Communication between the software developers and hardware developers working
on the same or different parts of the AUV.

6.2.3 Composition

ROS - Robot Operating System

Arduino IDE - Arduino Integral Development Editor
IMU - Inertial Measurement Unit

DVL - Doppler Velocity Log

Barometer - Measures depth and temperature

Sonar - For detecting objects

Hydrophones - For sound detection

6.2.4 Uses/Interactions
The functions of the software involved:

- Retrieving data from the IMU sensor

- Retrieving data from the DVL sensor

- Retrieving data from the Barometer

- Retrieving data from the Sonar

- Retrieving and processing the data from the Hydrophones
- Publishing all the data

6.2.5 Resources

IMU - https://www.arduino.cc/reference/en/libraries/mpu6050_tockn/
DVL - https://www.eol.ucar.edu/system/files/VN100manual.pdf

Barometer - https://github.com/bluerobotics/Bar30-Pressure-Sensor

Sonar - https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/

Hydrophones - https://www.aquarianaudio.com/as-1-hydrophone.html


https://www.arduino.cc/reference/en/libraries/mpu6050_tockn/
https://www.eol.ucar.edu/system/files/VN100manual.pdf
https://github.com/bluerobotics/Bar30-Pressure-Sensor
https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/
https://www.aquarianaudio.com/as-1-hydrophone.html

6.2.6 Interface/Exports

The sensors nodes will publish ROS topics with the following data for each sensor:

Barometer.msg
Field name Type
depth float32
temperature = float32

Hydrophones.msg

Field name Type

direction int32
Sonar.msg

Field name Type

distance float32

DVL.msg
confidence  float32
Field name

IMU.msg ol

Field name Type pitch

roll int32 yaw

pitch int32 x_translation

yaw int32 y_translation

6.3 Computer Vision

6.3.1 Responsibilities

Type
int32
int32
int32
float32

float32

Process video stream from the on board camera. Detect and classify objects relevant
to the competition and give useful information to the AUV. Determine current
distance from target object and direct AUV to move to object.

6.3.2 Constraints

The processing, object detection, and classification should be performed as close to

real time as possible.

Storage of the video may take a large amount of memory if not compressed.

Transmitting video to a GUI may take a large amount of bandwidth



Processing the large amount of video data may also cause the computer to generate
heat which can not be easily cooled off.

The object classification algorithm must be well trained.

Object detection and/or classification may be affected by the image processed when
underwater.

6.3.3 Composition

OpenCV - Computer Vision Library
YOLOvV4 - Object detection algorithm
Darknet - Neural Network framework
CUDNN - GPU accelerated library
6.3.4 Uses/Interactions

Computer Vision uses YOLO for real time object detection and classification. YOLO
is trained using Darknet by giving it labeled images of the objects to be found in the
competition. CUDNN accelerates the whole process by allowing us to use more of the
hardware to process the video stream. OpenLabeling allows us to label images for
training.

6.3.5 Resources

DARKNET https://github.com/AlexeyAB/darknet

OPENCYV https://opencv.org/
YOLO https://pjreddie.com/darknet/yolo/

CUDNN https://developer.nvidia.com/cudnn

OpenLabeling https://github.com/Cartucho/OpenLabeling
6.3.6 Interface/Exports

Computer Vision communicates to the Mission planning
The output is an object named data with the following attributes:
object - String, label for the object that was detected

confidence - double, a double from 0.0 to 1.0 of how confident the algorithm
1s. confidence levels under our set threshold will not be shown

vertical - int, number of pixels that the center of the object is away from the
center of the video. Negative is to the up, positive is to the down.

horizontal - int, number of pixels that the center of the object is away from the
center of the video. Negative is to the left, positive is to the right.


https://github.com/AlexeyAB/darknet
https://opencv.org/
https://pjreddie.com/darknet/yolo/
https://developer.nvidia.com/cudnn
https://github.com/Cartucho/OpenLabeling

6.4 User Interface
6.4.1 Responsibilities

The user interface is to be used only for testing purposes and not during the
competition itself. It will display the data that is received from the AUV’s multiple
sensors as well as video, control status, and the current state of the AUV. It will not be
used when it is the AUV’s time to compete.

6.4.2 Constraints

Limitations for the user interface is no communication is allowed when the AUV is
competing in the competition, this includes receiving data from the AUV to use for
the user interface. When it is the AUV’s time to compete, all communication with the
sub must stop; this includes receiving data to be displayed during the competition.

6.4.3 Composition

The user interface is divided into 5 sections that are the general, video, sensor,
control, and state. The general section will display options to start creating a log for
the data received and calibrating. The video section will display what the video
camera on the AUV is seeing. The sensor section will display all data that is received
from the sensors on the AUV. The control section will display the status of the
different controls on the AUV. The state section will show the current state of the
AUV.

6.4.4 Uses/Interactions

The user interface will receive data from the sensor programs, camera, control
programs, and state machine programs which will allow the user to oversee the
general state of all the mission planning, sensors, computer vision, and control data.
The user interface should not have any effect on any part of the system that it will be
receiving data from.

6.4.5 Resources

Resources that the user interface will require and use is Tkinter. Tkinter is a graphical
user interface library that will allow us to effectively create our user interface
application to display the data we receive during the testing of the AUV.

6.4.6 Interface/Exports

The user interface will directly communicate and receive data with the following
modules.

e Mission Planning
o State of the AUV
e Sensors
o IMU
m Pitch, yaw, roll
o Barometer
m Depth



m Distance
m Confidence level

m Depth
m  Velocity
o Hydrophone
m Direction of sound
e Computer Vision
o Video Camera feed
e (Controls
o Thruster status
o Torpedo status
o Claw status
o Ball drop status

6.5 Website
6.5.1 Responsibilities

The website is a requirement for the RoboSub competition. In the competition, there
are a few requirements that the website must satisfy in order to get a higher score.
Therefore, the website is mainly used to satisfy the requirements for the RoboSub
competition, but it can also serve as a resource for all the members of the RoboSub
Senior Design team, the RoboSub Club team, as well as any other people who might
be interested in RoboSub. The website will therefore provide information and
resources about RoboSub. This information will be as general as possible, so as to
allow everyone, whether they are familiar with RoboSub or not, to understand the
general idea of what RoboSub is and does.

6.5.2 Constraints

The website will not interact with the rest of AUV software. Therefore, the software
will be limited to what it can do separate from the rest of the software, and that is first
to satisfy the RoboSub competition requirements, and second to serve as a resource
for anyone that is involved or interested in RoboSub, providing information about this
year’s project, as well as any previous RoboSub projects and designs. The updates to
the website will therefore be connected with the development of the AUV. As
progress is made in the development of the AUV(s) and their software, the website is
updated with information on the state of the AUV(s) in question. Thus some of the
website’s information depends on the overall development of the AUV and its
software.

6.5.3 Composition

As with most websites, the composition of the RoboSub website will consist of
multiple JS pages, all of which will be connected with each other. The website will
also be styled and decorated with CSS files for each of the pages. Finally, the website



and its components will be updated on GitHub, where commits to the website’s
repository will also update the website itself with the updated version on GitHub.

6.5.4 Uses/Interactions

The website is for the most part separate from the rest of the AUV software, as it is
used for satisfying the competition requirements/rules and for providing information
and resources rather than for the functionality of the AUV itself. Thus, the website
does not interact with any other components of the software. However, this website
will be interacted with by various people, including the people who are hosting the
RoboSub competition, and many who may not be members of the senior design team
or competition, because the website is a resource for anyone who is interested in
RoboSub. Thus, the interactions of the RoboSub website are separate from the rest of
the AUV software, being a resource that is made for anyone, whether a member of the
senior design team, a RoboSub competition judge, or anyone else interested in
RoboSub.

6.5.5 Resources

As mentioned previously, the RoboSub website will not be managing anything that is
essential to the function of the AUV. The website is separate from the rest of the
RoboSub software, but it will have its own libraries which it will use, separate from
the rest of the AUV’s software. One of these is React, which is a JavaScript library
used for building Uls for websites. And, as mentioned previously, the website can be
modified and updated from its GitHub repository, which will make changes to the
website as new commits are made to the website’s GitHub repository.

6.5.6 Interface/Exports

The website will not provide any services for any other part of the AUV, whether code
or hardware, and it will consist mainly of text and buttons.



7. Detailed Lower level Component Design
7.1 state zero.py

7.1.1 Classification

This file contains the state machine for state zero.

7.1.2 Processing Narrative (PSPEC)

It is a python file that is loaded onto the AUV and makes sure that all state zero
implementations contain the proper methods needed for runtime.

7.1.3 Interface Description

The state_zero.py interface utilizes ROS

7.1.4 Processing Detail

To be determined at a later date.

7.1.4.1 Design Class Hierarchy
Not applicable.

7.1.4.2 Restrictions/Limitations

Must use as little CPU/GPU resources as possible to complete the task.

7.1.4.3 Performance Issues

Not issues at the moment.

7.2 execute gate.py

gate_state

execute_state

passed - sUCCess ) . suCcess i . success
state_zero e position_sub ————>{move_forward_vision —————» move_forward_no_vision

failed failed failed

| reset_for_reattempt |



7.2.1 Classification

This file contains the state machine for gate state.

7.2.2 Processing Narrative (PSPEC)

It is a python file that is loaded onto the AUV and makes sure that all gate state
implementations contain the proper methods needed for runtime.

7.2.3 Interface Description

The execute gate.py interface utilizes ROS

7.2.4 Processing Detail

To be determined at a later date.

7.2.4.1 Design Class Hierarchy
Not applicable.

7.2.4.2 Restrictions/Limitations
Must use as little CPU/GPU resources as possible to complete the task.

7.2.4.3 Performance Issues
No issues at the moment.

7.3 execute buoy.py
buoy_state

SUCCESS

Y

i . § SlUCCess
q position_sub | ] [ TouchBuaoy
\ continue

A

failed

| reset_for_reattempt |

7.3.1 Classification

This file contains the state machine for buoy state.



7.3.2 Processing Narrative (PSPEC)

It is a python file that is loaded onto the AUV and makes sure that all buoy state
implementations contain the proper methods needed for runtime.

7.3.3 Interface Description

The execute buoy.py interface utilizes ROS

7.3.4 Processing Detail

To be determined at a later date.

7.3.4.1 Design Class Hierarchy
Not applicable.

7.3.4.2 Restrictions/Limitations
Must use as little CPU/GPU resources as possible to complete the task.

7.3.4.3 Performance Issues
Parts of the file has to be modified in oder to complete the task.

7.4 execute bin.py

bin_state

execute_bin

success continue
buoy_state > position_sub | success | J check_bins b————»  drop_object +——

failed lever continue

failed

pull_lever
| reset_for_reattempt |

7.4.1 Classification

This file contains the state machine for bin state.

7.4.2 Processing Narrative (PSPEC)

It is a python file that is loaded onto the AUV and makes sure that all bin state
implementations contain the proper methods needed for runtime.



7.4.3 Interface Description

The execute bin.py interface utilizes ROS

7.4.4 Processing Detail

To be determined at a later date.

7.4.4.1 Design Class Hierarchy
Not applicable.

7.4.4.2 Restrictions/Limitations
Must use as little CPU/GPU resources as possible to complete the task.

7.4.4.3 Performance Issues
Parts of the file has to be modified in oder to complete the task.

7.5 execute_torpedo.py

torpedo_state

execute_torpedo

success open success

torpedo
1™ shoot_heart > shoot_head

ping_state S position_sub

continu
failed lever
failed
pull_lever )

| reset_for_reattempt |

7.5.1 Classification

This file contains the state machine for torpedo state.

7.5.2 Processing Narrative (PSPEC)

It is a python file that is loaded onto the AUV and makes sure that all torpedo state
implementations contain the proper methods needed for runtime.

7.5.3 Interface Description

The execute torpedo.py interface utilizes ROS



7.5.4 Processing Detail

To be determined at a later date.

7.5.4.1 Design Class Hierarchy
Not applicable.

7.5.4.2 Restrictions/Limitations
Must use as little CPU/GPU resources as possible to complete the task.

7.5.4.3 Performance Issues
Parts of the file have to be modified in order to complete the task.

7.6 execute dropper.py

dropper_state

execute_dropper

X dropper success open
ping_state R — position_sub j—————®  check_container ————® pick_up

continue
failed closed continue
failed
success
| open_container | | surface L

| reset_for_reattempt

7.6.1 Classification

This file contains the state machine for octagon state.

7.6.2 Processing Narrative (PSPEC)

It is a python file that is loaded onto the AUV and makes sure that all octagon state
implementations contain the proper methods needed for runtime.

7.6.3 Interface Description

The execute dropper.py interface utilizes ROS

7.6.4 Processing Detail

To be determined at a later date.

7.6.4.1 Design Class Hierarchy



Not applicable.

7.6.4.2 Restrictions/Limitations
Must use as little CPU/GPU resources as possible to complete the task..

7.6.4.3 Performance Issues
Parts of the file have to be modified in order to complete the task.

8. Database Design

This project does not require a database.



9. User Interface

9.1 Overview of User Interface

The user interface will display all the data received from our AUV’s sensors, video camera,
controls, and state of the AUV. The user interface is to not be used during the competition
and will only be used when testing the AUV.

9.2 Screen Frameworks or Images

9.3 User Interface Flow Model

The user interface will be divided into five sections. The general section will give the option
of calibrating and starting the log that is to be used to save data. The video section of the user
interface will display what the AUV is seeing through its video camera in real time. The
sensors section will display all the information that is received from the sensors. The state
section will display the current state that the AUV is currently in. The controls section will
display the status of the AUV’s controls.



10. Requirements Validation and Verification

10.1 Mission Planning

Requirement No. | Requirement Description

10.1.1 The system shall provide data to other systems of the AUV to perform
specific instructions.

10.1.2 The system shall receive data from other systems to perform current
state.

10.1.3 The system shall follow a plan of tasks the AUV needs to complete.

10.2 Navigation

Requirement No. | Requirement Description

10.2.1 The system shall communicate pinger information received from the
Hydrophones to the AUV.

10.2.2 The system shall communicate object detection data from the Sonar
sensor to the AUV.

10.2.3 The system shall communicate velocity measurements and translational
motion data received from the DVL to the AUV.

10.2.4 The system shall communicate pitch, roll, and yaw movements
received from VectorNav IMU sensor to the AUV.

10.2.5 The system shall communicate depth measurements received from the

Barometer to the AUV.




10.3 Controls

Requirement No. | Requirement Description

10.3.1 The system shall use data retrieved from sensors to send directional
commands to controls.

10.3.2 The system shall communicate appropriate speed to thrusters for
balancing the AUV.

10.3.3 The system shall use ROS publishers and subscribers to communicate

data.




11. Glossary

Amplifier - a device that increases the amplitude of the hydrophone signals
AUV — Autonomous Underwater Vehicle

GUI - Graphical User Interface

Hydrophone - a microphone designed for underwater use

Pitch - the turn about an axis from the left to right side of the RoboSub
React — A JavaScript library for building Uls for websites.

Roll - the turn about an axis from the nose to the tail of the RoboSub
SMACH - State Machine

Sonar - A device that can tell us distance to an object

Yaw - the turn about an axis from the top to the bottom of the RoboSub



12. References

RoboSub 2022 Handbook:
https://robonation.org/app/uploads/sites/4/2022/05/2022-RoboSub_Team-Handbook v2.0.pdf
ROS: http://wiki.r re/Documentation

SMACH: https://wiki.ros.org/smach?distro=melodic

Smach Viewer: http://wiki.ros.org/smach viewer



https://robonation.org/app/uploads/sites/4/2022/05/2022-RoboSub_Team-Handbook_v2.0.pdf
http://wiki.ros.org/Documentation
https://wiki.ros.org/smach?distro=melodic
http://wiki.ros.org/smach_viewer

