
Software Requirements
Specification

for

Robosub
Version 1.01 approved

Prepared by Carl Solli, Christian Castillo, Ashkan Aledavoud, Robin Romero, Alan Chan,
Leslie Araujo, Edwin Tran, Bryan Sanchez, Jeanie Jeon, Daniel Valadez

May 13th 2022

Table of Contents
Revision History 2

1. Introduction 4
1.1 Purpose 4
1.2 Intended Audience and Reading Suggestions 4
1.3 Product Scope 4
1.4 Definitions, Acronyms, and Abbreviations 4
1.5 References 5

2. Overall Description 6
2.1 System Analysis 6
2.2 Product Perspective 6
2.3 Product Functions 7
2.4 User Classes and Characteristics 8
2.5 Operating Environment 8
2.6 Design and Implementation Constraints 8
2.7 User Documentation 8
2.8 Assumptions and Dependencies 8
2.9 Apportioning of Requirements 9

3. External Interface Requirements 10
3.1 User Interfaces 10
3.2 Hardware Interfaces 10
3.3 Software Interfaces 11
3.4 Communications Interfaces 11

4. Requirements Specification 12
4.1 Functional Requirements 12
4.2 External Interface Requirements 13
4.3 Logical Database Requirements 13
4.4 Design Constraints 13

5. Other Nonfunctional Requirements 13
5.1 Performance Requirements 13
5.2 Safety Requirements 14
5.3 Security Requirements 14
5.4 Software Quality Attributes 14
5.5 Business Rules 14

6. Legal and Ethical Considerations 15

Revision History
Name Date Reason For Changes Version

Christian Castillo 10 Dec
2021

Starting document as team 0.01

1. Introduction

1.1 Purpose
The purpose of this document is to give a general overview of all requirements necessary for the
successful operation of an Autonomous Underwater Vehicle for the express purpose of competing in
the ROBONATION RoboSub Competition. This project is composed of various submodules, each
with their own dedicated software requirements. This document will include the requirements for all
the different submodules.

1.2 Intended Audience and Reading Suggestions
This document is intended for developers that are working on or need an insight into this project.

1.3 Product Scope
This project will be built up of different ROS packages. Here are a list of the packages that will be
developed:

- User Interface
- Mission Planning
- Computer Vision
- Controls & Sensors
- Guidance Navigation Control

These packages will be run simultaneously, communicating amongst each other to successfully
operate the AUV.

1.4 Definitions, Acronyms, and Abbreviations
AUV - Autonomous Underwater Vehicle

ROS - Robot Operating System

SMACH - State Machine

PID - proportional, integral, and derivative

GUI - Graphical User Interface

1.5 References
RoboSub 2022 Handbook:
https://robonation.org/app/uploads/sites/4/2022/05/2022-RoboSub_Team-Handbook_v2.0.pdf

ROS - https://www.ros.org/

SMACH - http://wiki.ros.org/smach/Documentation

Smach Viewer - http://wiki.ros.org/smach_viewer#Documentation

https://robonation.org/app/uploads/sites/4/2022/05/2022-RoboSub_Team-Handbook_v2.0.pdf
https://www.ros.org/
http://wiki.ros.org/smach/Documentation
http://wiki.ros.org/smach_viewer#Documentation

2. Overall Description

2.1 System Analysis

The purpose of the AUV software is to compete in a Robotic Submarine competition
in which each AUV must complete a set of tasks utilizing each component feature included in
the AUV. The various tasks include detecting and recognizing gates for the AUV to pass
through while selecting a side to follow through for the rest of the competition, detect and
swim into a buoy with an image of the side that was previously selected, shoot mini missiles
through a poster’s designated area, maneuver to a bin and be able to lift the bin’s cover and
drop items into the bins, and finally set bottles onto designated spots in an octagon.

To complete these tasks the AUV will use image recognition software to detect and
recognize task specific objects. AUV sensors will receive data such as pool depth and AUV’s
current position to update Mission Planning’s software to report task distance. The data
gathered through the image recognition software will dictate if the current task is completed.
After receiving data from both Computer Vision and Mission Planning, the AUV needs to
move onto the next task or continue with the current task.

2.2 Product Perspective

The AUV’s software depends on the state machine provided by Mission Planning to determine which
task to complete. Mission Planning’s software also depends on Computer Vision’s software which will
allow the UAV to classify objects correctly for the current task and vice versa Computer Vision
depends on Mission Planning to understand the current task to complete.

The software detailed in this document may work similarly to competitors due to the nature of an
AUV competition where each robotic submarine must complete the same series of tasks but some
AUV’s may have an advantage due to their design and software efficiency. The similarities between
all the robotic submarines are the ways each submarine completes their tasks, though the methods to
reach each task may differ. The motivation behind our design is to complete the required tasks quickly
and accurately to gain the most amount of points to maintain a point advantage.

The AUV’s software is made up of different departments which include Controls, Mission Planning
and Computer Vision. The diagram shown below shows how each group is a component of the overall
system.

2.3 Product Functions
The functions of the AUV’s software include:

● Detecting and classifying objects within the view of the AUV
○ This will be done using OpenCV for computer vision and YOLOv4 for deep learning

algorithms that classify objects found using OpenCV.
● Output function returns the name of the object, bounding box surrounding the object and

confidence value for the object’s classification.
○ Function will be done using the Darknet framework + YOLOv4, along with

mathematical calculations of bounding boxes and object classification.
● AUV sensors send current data to Mission Planning, data includes:

○ AUV’s current depth inside the pool
○ AUV’s current position relative to an object/task
○ AUV’s current rotation and speed when traversing through the pool
○ AUV’s current distance from target object for the task

2.4 User Classes and Characteristics
The user classes that are anticipated to use this product are software developers/engineers of future
Senior Design Teams as well as RoboSub club members that find a necessity to understand and use
Darknet and YOLOv4 to develop software with the ability to detect, recognize and classify objects.
Other aspects of the AUV that other users are expected to use are the mission planning software to
construct a state machine in which each component of the AUV will be able to pass data back and
forth to keep the AUV up to date with its current objective.

2.5 Operating Environment
Environment:

1. Operating System:
a. Ubuntu 18.04

2. Software:
a. Darknet/Yolov4
b. CUDA
c. OpenLabeling
d. ROS

3. Hardware: Jetson TX2
a. GPU: 256-core NVIDIA Pascal™ GPU architecture with 256 NVIDIA CUDA

cores
b. CPU: Dual-Core NVIDIA Denver 2 64-Bit CPU
c. Quad-Core ARM® Cortex®-A57 MPCore
d. Memory: 8GB 128-bit LPDDR4 Memory

4. Arduino Mega

2.6 Design and Implementation Constraints
Current Limitations of the AUV include:

● Communication between the groups designing the software of the AUV and the groups
designing the hardware of the AUV.

● Simulation of how the software of Computer Vision, Mission Planning and
Sensor/Controls will run on the AUV

● Must be efficient as possible with the given hardware to not overwork components

2.7 User Documentation
User documentation will not be provided with the software.

2.8 Assumptions and Dependencies
AUV Competition Assumptions:

● Assumptions that the AUV Competition Rules will remain similar to previous competitions.

● If there are minor rule changes, we will need to update our software and/or hardware to
complete the new objectives listed in the updated rules.

Dependencies:

● Reusing software from the previous year as a foundation for our software.

2.9 Apportioning of Requirements
No requirement delays expected.

3. External Interface Requirements
3.1 User Interfaces

The GUI is divided into five sections and that is the general, video, sensor, control and state sections
and will be used only for testing purposes. The user interface or any communication with the AUV is
not to be used during the competition. The general section will display options to start creating a log
of all the data that is to be received and also calibrating. The video section will be used to display
what the video camera on the AUV is currently receiving. The sensor section will be used to display
the data gathered from the multiple sensors on the AUV. The control section will be used to show the
current status of the controls on the AUV. The state section will be used to display the current state
that the AUV is currently in.

3.2 Hardware Interfaces
The AUV will have a Arduino Mega 2560 microcontroller for the sensors and actuators to connect to
and a Nvidia Jetson TX2 which the camera will connect to. The AUV will also have a thruster board
which all 8 thrusters on the AUV will be connected to. Below is a detailed list stating exactly what
sensors and controls are connected to which piece of hardware.

● Arduino Mega 2560 Microcontroller
○ Sensors

■ VectorNav IMU (Inertial Measurement Unit)
■ Teledyne Pathfinder DVL (Doppler Velocity Log)
■ Blue Robotics Bar30 Pressure Sensor
■ Blue Robotics Ping Sonar
■ AS-1 Hydrophones

○ Actuators
■ Claw
■ Ball drop

■ Torpedo
● Nvidia Jetson TX2

○ Camera
■ Blue Robotics Low-Light Camera

● Thruster Board
○ Thrusters

3.3 Software Interfaces
For software we will be using Python 2.7 on Ubuntu version 18.04 as our operating system with ROS
version Melodic. For computer graphics software, we will be using YOLO and OpenCV for image
detection. For mission planning we will be using the ROS -independent Python library SMACH to
build our state machines. For the control software we will be using the PID library in the Arduino
IDE.

3.4 Communications Interfaces
For communication, the AUV’s sensors will be communicating with the Arduino Mega using rosserial
and will also be using rosserial to communicate with the Arduino Mega to receive the data from the
sensors.

4. Requirements Specification

4.1 Functional Requirements
The software is to be implemented on an AUV designed by California State University Los Angeles.
The software has been split into ROS packages that each have their own functional requirements.
There are also some general requirements for the system as a whole.

General

1. The software shall provide an Autonomous system to accomplish tasks set forth by the
ROBOSUB competition

2. The software shall provide a controls system for AUV maneuvering

3. The software shall implement object recognition and tracking

4. The software shall interface with onboard sensors

5. The software shall navigate between tasks in a large underwater environment

6. The software shall monitor subsystems and check for possible errors

Mission Planning

1. Defining the current state the AUV is in

2. Taking in data obtained from other components of the AUV

3. Defining when the AUV transitions to another state from its current state

4. Passing data between different states

Controls & Sensors

1. The software shall connect and get data from the IMU

2. The software shall connect and get data from the DVL

3. The software shall connect and get data from the hydrophones

4. The software shall connect and get data from the sonar

5. The software shall connect and get data from the barometer

6. The software shall connect and control the 8 thrusters

7. The software shall connect and control the 2 torpedoes

8. The software shall connect and control the claw

9. The software shall connect and control the ball drop

10. The software shall publish the data from the sensors

Computer Vision

1. The software shall be trained on a dataset large enough for the CNN to learn and distinguish

the difference between the various objects in the course

a. 500 - 1000 images per object

b. Each image in the dataset must be labeled using OpenLabeling

2. The software shall be trained using Darknet and using the YOLOv4 algorithm

a. Edits must be made to the algorithm variables to be applicable to the need of the

dataset that it is given

b. Darknet requires a txt file listing the paths to all the images in the dataset along with

the config file that would be edited for dataset

4.2 External Interface Requirements
-

4.3 Logical Database Requirements
Non applicable.

4.4 Design Constraints
The AUV must have a clearly labeled kill switch that will disconnect the battery from the propulsion
devices. This does not necessarily have to cut battery to the computer. When reactivated, the
propellers must not spin.

Code written for the AUV must be able to run on an Nvidia Jetson TX2. To get the best performance
from the TX2, we will use the latest supported versions of software. It will use Ubuntu 18.04 Bionic
Beaver as the operating system. ROS Melodic will be the version of ROS used as the framework for
the robotic framework. The version of Python to be used is ver. 2.7.

5. Other Nonfunctional Requirements
5.1 Performance Requirements
The Autonomous Underwater Vehicle (AUV) must weigh less than 125lb (56.7 kg).

The AUV must pass safety inspection by the competition technical staff.

The AUV must work autonomously during the competition runs. There should be no way for
communication between the AUV and any person or off-board computer during the competition. All
parts of the AUV must be submerged and can not break the surface of the water.

The AUV must be battery powered using sealed batteries so as to reduce hazards from the chemicals
in the batteries.

The AUV must not release any objects other than markers, torpedoes, and compressed air.

The AUV must be able to be slung in a harness or sling.

5.2 Safety Requirements
● The AUV must be safe to use and must not cause damage to the pool or divers in the pool.
● It must not hurt anyone or damage anything while on the surface during inspections.
● Projectiles should not pose a threat or cause bodily harm.
● Projectiles should not be pointed at any person.
● Projectiles should not activate unexpectedly.
● When starting up, the propellers must not spin, nor should the missiles, ball dropper, or

robotic arm activate.
● After the kill switch is activated, the propellers must not spin.
● The propellers must not spin after reactivated into a safe state after kill switch press.
● The AUV must be able to be harnessed or slung for inspections.
● It must pass inspection by competition inspectors.

5.3 Security Requirements
The code must not be publicly available. It is only to be seen and worked on by authorized RoboSub
team members. We must also maintain version control to be able to see how the code is changing and
be able to revert to previous versions if needed. Those needs are met by GitHub as the code is stored
on a private repository that can only be viewed by authorized accounts.

5.4 Software Quality Attributes
The software must be tuned to the specific attributes listed in the rules to be released by the
competition organizers. It should also be well documented enough to give a good foundation for next
year’s RoboSub team. The software should have a degree of adaptability to adjust to fit the rules once
they are officially released. The software should include a test feature to be able to diagnose and
assess different components of the AUV.

5.5 Business Rules
Not applicable

6. Legal and Ethical Considerations
In order to comply with the rules of the competition, communication with the AUV during
competition is not allowed. Cheating is grounds for disqualification.

