

Software Requirements Specification

(SRS) Document

< Satellite Anomaly Injection & Detection Testbed>

<December 10, 2021>

<Version 1>

<By: Martha Caldera, Diana Degiacomo, Gabriel

Kutasi, Jae Lee, Michael Morris, Gustavo Torres,

Tomas Velarde, Dearo Yam, Rafael Zaragoza>

 1

 Table of Contents

Table of Contents………………………………………………………………………………….1

1. Introduction... 2

1.1. Purpose... 2

1.2. Intended Audience and Reading Suggestions.. 2

1.3. Product Scope.. 2

1.4. Definitions, Acronyms, and Abbreviations .. 2

1.5. References.. 2

2. General Description...3

2.1. System Analysis…... 3

2.2. Product Perspective.. 3

2.3. Product Functions.. 3

2.4. Operating Environment……….. 3

2.5. Constraints…………... 3

2.6. Assumptions and Dependencies……….. 3

3. External Interface Requirements.. 4

3.1. User Interfaces... 4

3.2. Hardware Interfaces... 4

3.3. Software Interfaces.. 4

3.4. Communications Interfaces... 4

4. Requirements Specification.. 5

4.1. Functional Requirements... 5

4.2. External Interface Requirements..5

4.3. Logical Database Requirements.. 5

4.4. Design Constraints... 5

5. Non-functional Requirements... 6

5.1. Safety Requirements.. 6

5.2. Security Requirements... 6

5.3. Software Quality Attributes... 6

5.4. Legal Requirements... 6

 2

1. Introduction

1.1 Purpose: The purpose of this document is to provide information on the anomaly

detection, resolution, and injection. It also provides information on the software tools and

simulation tools that are used in order to configure and simulate real-time environment

anomalies.

1.2 Intended Audience: This Document is intended for:

• Software developers who can review the project’s capabilities and understand where

more features can be added or improved.

• Project testers who can use this document as a base guideline for their testing needs.

• Project managers can use this document in order to see what has been completed,

what needs to be completed, and as a guidance to let developers know what they

should do.

• End-users of the application who would like to read about what the project can do

• End-users can read this document in order to see what the application is capable of

doing.

1.3 Scope: The scope of this document is the following:

• The software products in this application are Anomaly Injection, Onboard

Anomaly Detection, Ground Base Anomaly Detection, Onboard Anomaly

Resolution, and Ground Base Anomaly Resolution. These products will be further

explained in 1.3.1, 1.3.2, 1.3.3, 1.3.4, and 1.3.5.

• All the systems will utilize the OSK/COSMOS environment. The software will use

the simulated telemetry data and satellite data to inject and detect anomalies.

1.3.1 Anomaly Injection

• Allows the user to inject an anomaly into the cFS. The anomaly Injection will modify

the data that is onboard the satellite.

1.3.2 Onboard Anomaly Detection

• Automated software will be able to detect anomalies within the cFS. The onboard

anomaly detection will make comparisons with the satellite data and nominal data.

1.3.3 Ground Base Anomaly Detection

• Automated software will be able to detect anomalies found in the telemetry data. The

ground base anomaly detection will make comparisons with the telemetry data and

nominal data.

1.3.4 Onboard Anomaly Resolution

• Automated software will be able to resolve any anomalies detected within the cFS

onboard the satellite.

1.3.5 Ground Base Anomaly Resolution

 3

• Automated software will be able to resolve any anomalies detected within the

telemetry data from the ground system.

1.4 Document Conventions, Definitions, Acronyms, and Abbreviations:

1.4.1 Acronyms/Abbreviations

Acronyms/Abbreviations Definition

cFE Core Flight Executive

cFS Core Flight System

DOS Denial Of Service

DDOS Distributed Denial Of Service

OSK OpenSatKit

SB Software Bus Services

SBE Single Bit Error

1.5 References:

1.5.1 Aerospace detailed proposal

1.5.2 OSK User’s Guide

https://docs.google.com/document/d/1dNxzF61bQBrtfq3F8groJ8eP1iLEu-Q7/edit
https://github.com/OpenSatKit/OpenSatKit/blob/master/docs/OSK-Users-Guide.pdf

 4

2. General Description

2.1 System Analysis:

Main Goals of Project:

Detection and Automation of Anomalous Behavior/Data
• Once an anomaly is detected either on board or on the ground system, software will

try to automatically resolve the anomalous behavior

• This is done through advanced data analysis techniques which allow the anomalies to

be resolved before they become a large issue.

Technical Hurdles:
• Hardware limitations on board system does not allow for large amount of processing

power to be put on board system.

• Potential slow connection between ground system and flight system when they are

not close to a communication point could lead to technical faults in the onboard

software.

• Potential loss of flight system if anomaly isn’t resolved in a quick manner.

2.2 Product Perspective:
2.2.1 Anomaly Injection

The anomaly injection will be integrated into the cFS. The anomaly injection will make use

of the cFE libraries to be able to connect with the other applications located on the cFS.

2.2.2 Onboard Anomaly Detection

The onboard anomaly detection will be integrated into the cFS. The onboard anomaly

detection will make use of the cFE libraries in order to connect with the other applications

located on cFS.

2.2.3 Ground Base Anomaly Detection

The ground base anomaly detection will be integrated into COSMOS. The ground base

anomaly detection will make use of the cFE libraries to connect with COSMOS and the cFS.

2.2.4 Onboard Anomaly Resolution

The onboard anomaly resolution will be integrated into the cFS. The onboard anomaly

resolution will make use of the cFE libraries in order to connect with the other applications

located on cFS.

2.2.5 Ground Base Anomaly Resolution

The ground base anomaly resolution will be integrated into COSMOS. The ground base

anomaly resolution will make use of the cFE libraries to connect with COSMOS and the cFS.

 5

2.3 Product Functions:
2.3.1 Anomaly Injection

• Injects the following anomalies:
o Runaway task - Eats up the CPU of the cFS
o Memory leak - Eats up the memory of the cFS
o Denial of service - Occupies the bandwidth of the OSK softwarebus
o Invalid command sequences - Affects the execution of commands in the

cFS
o Single bit errors - Affects the memory data of the cFS

• The injection software will allow the user to input their anomaly of choice

• The injection software will have an automated process that will wait until a period

of time has passed before injecting one of the anomalies at random.
o The user can turn this feature on and off

 2.3.2 Onboard Anomaly Detection

 Automated detection software checks for anomalies. The anomalies being checked for are

runaway tasks, memory leak, and single bit errors. Once an anomaly has been detected it creates

and event log and notification of the anomaly. An event log and notification are queued and

downlinked to the ground system next contact.

2.3.3 Ground Base Anomaly Detection

Automated detection software checks for anomalies from the telemetry data. The anomalies

being checked for is the denial of service and invalid command sequences. Once an anomaly has

 6

been detected it creates an event log and a notification of the anomaly. The event log and

notification are sent to ground.
 2.3.4 Onboard Anomaly Resolution

 Automated software onboard checks if there are any anomalies that have been detected and

it will resolve them. Once an anomaly has been resolved it creates and event log and notification

of the anomaly. An event log and notification are queued and downlinked to the ground system

next contact.

2.3.5 Ground Base Anomaly Detection

Automated software on the ground system checks if there are any anomalies that have been

detected and it will resolve them. Once an anomaly has been resolved it creates an event log and

a notification of the anomaly. The event log and notification are sent to ground.

2.4 Operating environment:

• The software will run on the Ubuntu 18.04 LTS operating system, as OSK

currently is supported on that specific Linux system. It is expected to have OSK,

cFS, COSMOS, and 42 installed to make use of the desired open source software

for development.

2.5 Constraints:
• Onboard satellite constraints of limited memory and CPU cycles running on a

single thread

• Ground communication limitation of reduced response times and payload

limitations

2.6 Assumptions and dependencies:

• Ubuntu Operating System (18.04 LTS)

 7

3. External Interface Requirements.

3.1 User Interfaces

TBD

3.2 Hardware Interfaces

TBD

3.3 Software Interfaces

Open Sat Kit (OSK) – Core Flight System Starter Kit

The project will leverage OpenSatKit (OSK), which combines three powerful open source tools

that are currently used in real missions today: Ball Aerospace Corporation's COSMOS ground

system, NASA Goddard’s core Flight System(cFS) flight software, and NASA Goddard’s 42

satellite simulator. See the documentation for OSK in its GitHub Wiki.

Each major software component is described in more detail in the sections below.

Core Flight System – Flight Software

OSK provides a complete desktop solution for learning how to use NASA's open source flight

software (FSW) platform called the core Flight System (cFS). The cFS is a reusable FSW

architecture that provides a portable and extendable platform with a product line deployment

model. The cFS has significant flight heritage, provides a complete set of command and data

handling functions required by most spacecraft, and is reliable. A virtual environment with OSK

set up will serve as the development environment for learning about flight and ground system

communications as well as providing a platform for developing anomalies to be injected into the

simulation. OSK comes with the cFS preconfigured for a fictitious satellite called SimpleSat

(SimSat).

42 – Spacecraft Simulator

In addition to cFS, OSK uses NASA Goddard’s 42 dynamic satellite simulator for simulated

hardware command and telemetry. 42 is a comprehensive general-purpose simulation of

spacecraft attitude and orbit dynamics. Its primary purpose is to support design and validation of

attitude control systems. 42 accurately models multi-body spacecraft attitude dynamics as well as

modelling environments from low Earth orbit to throughout the solar system. It also features

visualization of spacecraft attitude.

COSMOS – Ground System

OSK implements extensive COSMOS configurations and customizations so COSMOS can serve

as the primary OSK user interface. COSMOS is a suite of applications that can be used to

communicate with the satellite, monitor its performance and health, and display its data. The

systems that COSMOS interfaces with can be anything from test equipment (power supplies,

oscilloscopes, switched power strips, UPS devices, etc.), to development boards (Arduinos,

Raspberry Pi, Beaglebone, etc.), to satellites.

https://github.com/OpenSatKit/OpenSatKit
https://cosmosrb.com/
https://cfs.gsfc.nasa.gov/
https://software.nasa.gov/software/GSC-16720-1
https://github.com/OpenSatKit/OpenSatKit/wiki

 8

COSMOS implements a client server architecture with the Command and Telemetry Server and

the various other tools typically acting as clients to retrieve data. The Command and Telemetry

Server connects to the targets and sends commands and receives telemetry (status data) from

them. Targets are the items you are trying to control or get status from

3.4 Communications Interfaces

TBD

 9

4.Requirements Specification

4.1 Functional Requirements

Requirement # Requirement Description

4.1.1 Anomaly Injection

4.1.1.1 The anomaly injection shall inject the following anomalies

• Runaway Task

• Memory Leak

• Denial of Service

• Invalid Command Sequence

• Single Bit Error

Explanation: These are the anomaly examples that were proposed for use.

4.1.1.2 The runaway task shall create a task in the cFS that does not terminate

Explanation: A task will be created in cFS that never terminates.

4.1.1.3 The memory leak shall allocate memory on the cFS without deallocating

Explanation: This will happen when memory is allocated without

properly being deallocated on the satellite.

4.1.1.4 The denial of service shall spam messages to the software bus

Explanation: This will happen when there will be an overwhelming

amount of messages being sent on the software bus.

4.1.1.5 The invalid command sequence shall send a sequence of commands out

of order

Explanation: This will happen when commands are going to be sent out

of order.

4.1.1.6 The single bit error shall flip a bit in the rewritable memory of the cFS

Explanation: This will target rewritable memory as it can crash the whole

system if one bit is out of place.

4.1.1.7 The anomaly injection shall have an automated process to inject

anomalies at a random time, or the user can manually do it.

Explanation: There should be a way to automatically inject anomalies but

also the user should be able to manually do this.

4.1.2 Onboard Detection

4.1.2.1 There should be automated onboard anomaly checks for the following

anomalies:

• Runaway Task

• Memory Leak

• Single bit Error

Explanation: These are the anomalies that are found onboard the satellite.

4.1.2.2 The runaway task detection shall acquire the CPU data from the cFS and

 10

detect anomalous behavior in it

Explanation: The runaway task will eat up CPU resources that are not

being used, this will be detected and sent for resolution.

4.1.2.3 The memory leak detection shall acquire the memory state from the cFS

and detect anomalous behavior in it

Explanation: The memory leak will eat up spare memory onboard that is

not being used, this will be detected and sent for resolution.

4.1.2.4 The single bit error shall acquire memory data from the cFS and detect

anomalous behavior in it

Explanation: If there are any bits off in the memory data, the anomaly

will be detected and sent for resolution.

4.1.2.5 An event log shall be created onboard, along with a notification of each

time an anomaly is detected which can both be sent to the ground system

Explanation: This will allow the developers to keep track of all the

anomalies that have been detected onboard the satellite.

4.1.3 Ground Detection

4.1.3.1 There should be automated ground system anomaly checks for the

following anomalies:

• Denial of Service

• Invalid Command Sequence

Explanation: These anomalies are found on the ground system.

4.1.3.2 The denial of service detection shall acquire the connection time between

the COSMOS and the cFS and detect anomalous behaviors in it

Explanation: If there is any type of slowing down in communication

between the COSMOS and cFS, an anomaly will be detected and sent to

resolution.

4.1.3.3 The invalid command sequence detection shall acquire the command

sequence being sent up to the cFS and detect anomalous behaviors in it

Explanation: If any commands are sent out of order it will mean that an

anomaly is happening and will be sent for resolution.

4.1.3.4 An event log shall be created in the ground system, along with a

notification of each time an anomaly is detected

Explanation: This will allow the developers to keep track of all the

anomalies that have been detected on the ground system.

4.1.4 Onboard Resolution

4.1.4.1 Automated software onboard will resolve runaway task anomalies once

they are detected.

Explanation: The runaway task will eat up CPU resources that are not

being used. Once this is detected, the anomaly will be resolved.

4.1.4.2 Automated software onboard will resolve memory leak anomalies once

they are detected.

 11

Explanation: The memory leak will eat up spare memory onboard that is

not being used. Once this is detected, the anomaly will be resolved

4.1.4.3 Automated software onboard will resolve single bit error anomalies once

they are detected.

Explanation: If there are any bits off in the memory data, the anomaly

will be automatically resolved.

4.1.4.4 An event log shall be created onboard, along with a notification of each

time an anomaly is resolved which can both be sent to the ground system

Explanation: This will allow the developers to keep track of all the

anomalies that have been resolved onboard the satellite.

4.1.5 Ground Resolution

4.1.5.1 Automated software in the ground system will resolve denial of service

anomalies once they are detected

Explanation: If there is any type of slowing down in communication

between the COSMOS and cFS, the anomaly will be automatically

resolved.

4.1.5.2 Automated software in the ground system will resolve invalid command

sequence anomalies once they are detected.

Explanation: If any commands are sent out of order it will mean that an

anomaly is happening and will be resolved.

4.1.5.3 An event log shall be created in the ground system, along with a

notification of each time an anomaly is resolved

Explanation: This will allow the developers to keep track of all the

anomalies that have been resolved on the ground system.

4.2 External Interface Requirements

See Section 3

4.3 Logical Database Requirements

TBD

4.4 Design Constraints

Limited amount of computing power onboard, along with limited CPU cycles and processor

running on a single thread.

 12

5. Non-Functional Requirements

5.1 Safety requirements

The main safety requirement is safe practices by everyone using the software and making sure

that it only accepts valid templates for anomaly simulations, making sure that there is nothing

that can harm the software.

5.2 Security requirements

The main form of software is an open source software, meaning that there is not much security in

place.

5.3 Software quality attributes

Most significant issue: software must run on Ubuntu 18.04 LTS operating system; key software

components from OSK only support that OS. Hardware limitations should be exceptionally low,

allowing for installation and operation on most platforms to support Ubuntu.

5.4 Legal requirements

There are no legal requirements currently in place.

