Preliminary Design Review

for

Satellite Anomaly Injection & Detection Testbed
Fall 2021

Prepared by Diana Degiacomo, Martha Caldera
CSULA / The Aerospace Corporation

November 19, 2021

Table of Contents

Table of Contents

1. Overview
1.1. Purpose

2. Requirements Progress
2.1. Development and Testbed Environment
2.1.1. Outcome Overview
2.1.2. Coding Team OSK Image
2.2. Anomaly Injection
2.2.1. Outcome Overview
2.2.2. Denial of Service Injection
2.2.3. Single Bit Error Injection
2.3. Anomaly Detection
2.3.1. Outcome Overview
2.3.2. Denial of Service Detection
2.3.3. Single Bit Error Detection
2.4. Anomaly Resolution
2.4.1. Outcome Overview
2.4.2. Denial of Service Resolution
2.4.3 Single Bit Error Resolution

3. Timeline
3.1. Living Document
3.2. Current Timeline Snapshot

4. Additional Information
4.1. Ground System & Machine Learning Implementation
4.1.1. Uplink
4.1.2. Downlink
4.1.3. Ground System

o

O o0 o0 o0 R N 9 [N NV, IRV, IV, IV, IV, B, RV, [N N A N SR S I) NN

1. Overview

1.1. Purpose

The purpose of this document is to consolidate and recapitulate all of the developing
information and progress regarding the SAID Testbed, update on progress towards
requirements, and snapshot a living schedule/timeline of project progress.

2. Requirements Progress

2.1. Development and Testbed Environment

Provide a flight software, ground station, and spacecraft simulator testbed environment
for developing anomaly injection, detection, and resolution capabilities. Team shall
establish a development environment with OSK installed and configured to be used for
learning about OSK and as a testbed to test anomaly injection, detection, and resolution.

2.1.1. Outcome Overview

All team members have set up an OSK environment and have at least a base
understanding of app development from running the Hello World tutorial.

Start Up OSK

e Change directories to enter the directory where cosmos is located
(“cd /OpenSatKit-master/cosmos”)

e Run “ruby Launcher”
e Click on Open Sat Kit and it should open the OSK home page

Fig. 2-1 OSK Environment Instructions

Basic Workflow for Hello World

e Green are files created by the program,
yellow are files that we will be editing and

blue are assumption files and we don’t P
need to worry about them _... -,
e When finally starting the cfs server it will T
run the example application and display:._
in the cfs terminal whether it worked Of if | mm——
there was an error s v

Fig. 2-2 Hello World Tutorial

Command Sender/Terminal

Fig. 2-3 Test Command Sending

2.1.2. Coding Team OSK Image

An image of the coding team’s progress is also made available to all team members in
our project’s shared google drive, titled “‘ubuntu OSK1 Clone.ova’. To allow all
members to be privy to and have a working environment of the development
progress.

2.2. Anomaly Injection

Develop various anomalous scenarios along with a capability to inject these scenarios
into the flight system. Team shall develop anomaly inject capabilities to include, but not
limited to, the following scenarios:

e component failure (affecting sensor, actuator, thruster, solar panel, thermal,
star-tracker, and other systems)
unexpected halt and/or reboot of main processor
multiple single-event upsets (SEUs) occurring in short period of time
loss of communication with ground

2.2.1. Outcome Overview

Our team is focusing on anomaly injection methods explored by the previous year’s
team. The primary focus being Denial of Service and Single Bit Error.

2.2.2. Denial of Service Injection

Denial of Service injection is fully functioning using to Netwox 76 Synflood tool to
overrun the Software Bus of COSMOS successfully denying any transmission of
packets.

File Mode Help

= | Command: INJECT
Description: Inject Moading attack

Parameters

Hame

Fig. 2-4 Denial of Service Injection & Detection
2.2.3. Single Bit Error Injection

When the Single Bit Error Injection command is ran, it changes a bit from a byte of
memory in the Single Bit Error Injection Application which is stored in the cFS. This
will throw off the parity bits which keep track of the even and odds of 1s. The byte is
only used as a temporary memory so it isn’t stored anywhere in the Core Flight
System.

2.3. Anomaly Detection

Develop the capability to detect anomalous behaviors during the mission and generate
notifications when anomalies are detected.

2.3.1. Outcome Overview
Areas of focus are Denial of Service and Single Bit Error.
2.3.2. Denial of Service Detection

Denial of Service detection is fully functioning. When the transfer rate is over 400
bytes a Denial of Service attack is detected. The user is notified by a warning
message pop-up. See fig. 2-4.

2.3.3. Single Bit Error Detection

Hamming code can pinpoint the location of a single-bit error and correct it. Hamming
code makes it so certain bits in the data keep track of the rest of the bits. The
single-bit error detection and resolution work hand-in-hand. Once the Hamming code
detects an error it can fix it, the downside of this detection and resolution systems is
the uncertainty around whether this will work with multiple events. When it comes to
multiple bit errors, hamming cannot pinpoint the location of the errors to correct but
can still detect that there is an error

2.4. Anomaly Resolution
Develop the capability to automatically resolve anomalies after they have been detected.
2.4.1. Outcome Overview

Our aim with resolution is to ultimately deploy machine learning in the ground
system that will automatically resolve on-board and ground anomalies.

2.4.2. Denial of Service Resolution

For Denial of Service, we are going to be using SYN cookies to manage incoming
data to prevent half-open connections and manage the queue. This is to prevent our
server from overloading and crashing. When our server's queue is managed and in
stable conditions, we plan to use machine learning techniques to validate incoming
packets. If these packets are valid according to our machine learning algorithms then
we will allow them into the queue.

2.4.3 Single Bit Error Resolution

For Single Bit Error resolution, our team is using Hamming code which makes it so
certain bits in the data keep track of the rest of the bits. These specific bits will be a 1
when there's an odd number of s in the section of bits they're checking and a 0 where
there's an even number of Is. After creating this new string of bits we will then store
the indices of the location where there is a 1 in the new string of bits. We will convert
the indices to binary and conduct the XOR function and the result should always be
0000 if there is no error. So, when the injection command is ran it will flip a bit in the
data which will throw off the parity bits which keep track of the even and odds of 1s.
When we run the XOR function on the new string of bits it will not return 0000 and
instead, return the binary location of where the error is located which we will then
convert to an integer and flip the bit at that location of the string resolving the issue.

3. Timeline

3.1. Living Document

Timeline - Living Document Link

3.2. Current Timeline Snapshot

Week Date 23-Aug 30-Aug 6-Sep 13-Sep 20-Sep 27-Sep 4-Oct 11-Oct 18-Oct 25-Oct 1-Nov 8-Nov 15-Nov 22-Nov 29-Nov 6-Dec 13-Dec
Week #
1 2) 3 4 5 6 7 8 9 10 1 12 13 Thaxssli:iﬂs 14 15 Finals
cel
Meeting -Liaison Status Liaison New Groups: | -Start of Doc. -Liaison -Group1: -Group1: -Liaison | -New groups:
Topic Intro: Kickoff | -Liaison Meeting update & | Updateon |Groupl:Run| Phase Update on [Finish Uplink| Continue | Update on |Coding Group:| Liaison Senior Design | -Liaison
Meeting Meeting -Group1: continue 9/25 and Simulator | -New Groups: 10/15 & Downlink, | Resoluti 1/5 D { Update Presentation on| Meeting
-Get familiar | Launch attack | working on | 2021-2022 Group2: |Group1: Uplink| -Group1: Begin -Group2: -Group1: | Group: Finish | on 11/19 12/3 on 12/10
with & install research group qui its| Explore new | & Downlink Continue | Resolutions | Finish SRS Finish PDR & PMR -End of
0OsK -Group2: |assignments| received |requirements Group2: Uplink & -Group2: doc. Resolutions Doc.
Detect DoS & create Improve Downlink Finish -Group 2: Phase
research timeline timeline & -Group2: Detection, Begin PDR &
-Group3: Run explore Continue with | Begin SRS PMR doc.
simulator detection detection & doc.
doc. phase

Milestone

OSK Test Bed Group -Simulation ran; -DoS Injection

Requirement assignments & successfully & Detection

Met presentations -Timeline -SBE Injection|
complete created

Week Date
Week # Break Break 16 17 18
Meeting Topic| Start of Code | Start of

Phase Testing

Phase
Milestone
Spring
Week Date 16-May
Week # 19 20 21 22 23 24 25 26 27 Spring Break 28 29 30 31 32 33 Finals
Meeting Topic| Liaison Liaison Liaison Update TRR -End of Liaison End of Wrap Liaison Presentation al
Update on Update on on 311 Code/Testing | Update on Up Phase Update on Aerospace
128 2/18 Phase 4/08 4/29
-Start of Wrap)
Up of Phase

Milestone

Fig. 3-1 Timeline Snapshot

https://docs.google.com/presentation/d/1LM2eyTGqBuJkFGHEvDMmFjv1pQNdUEn_E3pBkaR7pfo/edit#slide=id.p

4. Additional Information

4.1. Ground System & Machine Learning Implementation

Our goal for resolution implementation is machine learning on the ground system for
both ground and onboard anomalies as COSMOS, the ground system, will have more
computing capabilities. Machine learning consists of designing and constructing methods
that give computers the ability to learn from past data, without being explicitly
programmed, and then make predictions on future data.

4.1.1. Uplink

Command Sender allows communication with the satellite from COSMOS. When a
command is sent to the core flight system it sends the message-id from the command
and the name of the command. The satellite then communicates with itself and runs a
function called CFE_EVS SendEvent(). The function is what communicates and
prints to the core flight system terminal.

4.1.2. Downlink

COSMOS updates the command counter and telemetry view by the satellite running
the commands and updating the counters. If an error occurs when running a command
then the satellite will let COSMOS know an error occurred and create a file that is
stored in COSMOS.

4.1.3. Ground System

COSMOS implements a client-server architecture with the Command and Telemetry
Server and the various other tools typically acting as clients to retrieve data. The
Command and Telemetry Server connects to the targets and sends commands and
receives telemetry (status data) from them. Automation of resolution will utilize
machine learning to apply the correct solution for onboard anomalies once telemetry
data is received. Then a solution can be implemented to onboard the satellite.

