	
	
	

	
	
	

	12/2/21				QTC Management, Inc. Confidential 4
			

	
	
	

[image:]

	
	
	

PROJECT: Exam File Manager (EFM)

	
	
	

 TECHNICAL SPECIFICATIONS DOCUMENT

	
	
	

Created: 11/10/2021
Document Revision History

	Release No.
	Date
	Revision Description/
Requirement #
	Modified By
	Approved By
	Approval Date

	V1.0
	11/11/2021
	Revision
	Norman Avery
	
	

	V2.0
	11/17/2021
	Revision
	Norman Avery
	
	

	V3.0
	11/23/2021
	Revision
	Norman Avery
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

1.0	Proposed (Basic) User Interface Design for Exam File Manager	4
2.0	GENERAL INFORMATION	5
2.2.2	Project Objective	5
2.2.3	Overview	5
3.0	Architecture	5
3.2	Systems Architecture	5
3.2.2	High Level Design Describing the Different Type of Systems Interacting with EFM.	5
3.2.3	High Level Design Describing the Assembly Plugin and AllPlugins_Service Object	6
3.3	Application Architecture	7
3.3.2	High Level Design to Implement and Load the Assembly Plugin	7
3.3.3	High Level Design to Configure Services	7
3.3.4	High Level Design to Implement Business Logic for Common Features	8
3.3.5	High Level Design to Retrieve Lines of Businesses via “RetrieveLinesOfBusiness” method	9
3.3.6	High Level Design to Execute Plugin Feature (Business Logic) via “ExecuteBusinessLogic”	10
3.3.7	High Level Design to Execute Plugin Feature “Confirm”	11
3.3.8	High Level Design to Execute Plugin Feature “Delete”	12
3.3.9	High Level Design to Execute Plugin Feature “Import”	13
3.3.10	High Level Design to Execute Plugin Feature “Index”	14
3.3.11	High Level Design to Execute Plugin Feature “Repair”	15
3.3.12	High Level Design to Execute Plugin Feature “Scan”	16
3.3.13	High Level Design to Execute Plugin Feature “Search”	17
3.3.14	High Level Design to Execute Plugin Feature “View”	18

[bookmark: _Toc390434477][bookmark: _Toc483130546][bookmark: _Toc483280571][bookmark: _Toc166552228]
	

1.0 [bookmark: _Toc88589186]Proposed (Basic) User Interface Design for Exam File Manager

[image: Graphical user interface

Description automatically generated]

[bookmark: _Toc83296140][bookmark: _Toc88589187]GENERAL INFORMATION

[bookmark: _Toc83296141][bookmark: _Toc88589188]Project Objective
The current Exam File Manager application needs to be redesigned for extensibility. This new design will enable the ability to dynamically configure the application, customized for a specific line of business. The method of configuration employs the use of a developer plugin (assemblies) that will configure the application at run time. To make it possible for the web application to interact with external systems, additional services will be configured by the plugin, and injected into the application via dependency injection.

[bookmark: _Toc88589189]Overview
Currently, the EFM application uses excessive if-then logic to distinguish which line of businesses that the application’s business logic executes against. The new approach will increase scalability, as Lines of Business are installed to the web application by assembly plugins, being authenticated based on user roles and plugin configuration. The underlying web application will be generic in nature, but configurable and extensible by the use of assembly plugins.
[bookmark: _Toc83296142][bookmark: _Toc88589190]Architecture
[bookmark: _Toc83296143][bookmark: _Toc88589191]Systems Architecture
[bookmark: _Toc88589192]High Level Design Describing the Different Type of Systems Interacting with EFM.
Systems that will be interacting with the web application include External File Repositories, a Database, Assembly Plugin, and Local File Systems
[image:]

[image:]

[bookmark: _Toc88589193]High Level Design Describing the Assembly Plugin and AllPlugins_Service Object
Lines of Business will be installed by implementing an assembly a plugin that contains all necessary information related to a line of business. The plugins will be loaded at runtime and added as a collection to a service object called AllPlugins_Service Object. This service object will be injected into a web controller via dependency injection, and will be referenced by the web controller to perform all necessary functions related to Exam File Manager, respective to a line of Business.

[image: Diagram

Description automatically generated]

[bookmark: _Toc83296144][bookmark: _Toc88589194]Application Architecture
[bookmark: _Toc83296145][bookmark: _Toc88589195]High Level Design to Implement and Load the Assembly Plugin
Current flow
Currently, EFM does not use custom assemblies to configure the web app specific to a line of business.
New/Proposed Flow
A library assembly interface will contain all the required class members and function declarations that will be used to extend common functionality.

[bookmark: _Toc88589196]High Level Design to Configure Services
New/Proposed Flow
The assembly’s implemented plugin class will contain lists of key-value pairs used to create service objects that are utilized by the application to connect to a file repository and database.

These respective objects will be created and injected as singleton service objects at runtime. Additionally, the assembly plugin object itself will be injected as a singleton service, which will be used to extend the business logic for common features. These objects will be referenced by the web application’s controllers via dependency injection.

[image: Diagram

Description automatically generated]

[image:]

[image: Diagram

Description automatically generated]
[bookmark: _Toc88589197]High Level Design to Implement Business Logic for Common Features
Current flow
Currently, the application uses excessive if/then statements to execute business logic specific to a line of business.

New/Proposed Flow
The assembly plugin will contain a list that defines if common features will be available for a specific line of business. Additionally, the plugin will include methods that are extended from an interface, containing custom business logic. At runtime, the “PluginLoaderHelper” class will load the plugin, and instantiate an object containing the respective business logic for each common feature. The web application’s Controller will reference these methods based on parameters passed throughout the web application’s HTTP requests. The following sections demonstrate how the web application’s Controller will interact with the plugin’ respective methods, to execute the plugin’s business logic.

[bookmark: _Toc88589198]High Level Design to Retrieve Lines of Businesses via “RetrieveLinesOfBusiness” method
Current flow
Currently, the application uses excessive if/then statements to find all lines of businesses that a user belongs to.

New/Proposed Flow
For demonstration purposes, a GUI (Graphical User Interface) landing page will be the first point of entry to the Exam File Manager. Before generating the landing page, the web controller will utilize the authentication module to retrieve the roles and respective security levels that a user belongs to. The controller will then reference the AllPlugins_Service_Object (injected as a service object via dependency injection by the application’s startup class) to find a complete list of all “Lines of Business” that has been installed in the web application via assembly plugins. If no Lines of Business are found, an error message will display.

The controller then will call a function belonging to the AllPlugins_Service_Object, namely “RetrieveFeatureNames” – to retrieve a list of available features defined in the plugin. The installed Line(s) of Business will then be sent to the landing page with a list of respective features that are enabled for each line of business. The user can then select a line of business, which will be sent back to the controller for further processing and rendering of a dynamic razor page.

[image: Diagram

Description automatically generated]

[bookmark: _Toc88589199]High Level Design to Execute Plugin Feature (Business Logic) via “ExecuteBusinessLogic”
Current flow
Currently, the application uses excessive if/then statements to execute business logic, using security based on a user, permissions, and line of business.

New/Proposed Flow
Execution of business logic will no longer need to apply if/then statements to filter executed code specific to a Line of Business. Instead, at this point, the Exam File Manager Environment will already be filtered, and only applicable to a single, specific Line of Business, by the previous actions taken in 2.2.4-2.2.5. Business Logic code execution will proceed after a user click event respective to the feature (ex. Import button clicked). The action will then send the following parameters to a controller - role, security levels, LOB, feature name, and data (params) respective to the feature. The controller then references the AllPlugins_Service_Object to validate the availability of the feature. Once validated, the business logic associated with a feature is executed by calling the function “ExecuteBusinessLogic”. Next, a razor web page view is rendered which will return the user to the Exam File Manager.

[image: Diagram

Description automatically generated]

[bookmark: _Toc88589200]High Level Design to Execute Plugin Feature “Confirm”

New/Proposed Flow
The ‘Confirm’ button exists to confirm that the indexing of a Medical Record is complete. After the user has indexed a Medical Record, the ‘Confirm’ button will be enabled. When the ‘Confirm’ button is clicked, it will be disabled and greyed out.

[image:]

[bookmark: _Toc88589201]High Level Design to Execute Plugin Feature “Delete”

New/Proposed Flow
Effectively deletes a file by renaming it to something that will not be displayed.

[image:]

[bookmark: _Toc88589202]High Level Design to Execute Plugin Feature “Import”

New/Proposed Flow
The main goal of the import feature is to allow a user from any line of business to import a file. When the file is imported, the controller checks the file’s name. Then it names it according to the user who imported the file.

[image: Diagram

Description automatically generated]

[bookmark: _Toc88589203]High Level Design to Execute Plugin Feature “Index”

New/Proposed Flow
The index button will bring up a window that will require input from the user. The index will set which pages belong to which specialty. For example, pages 1 - 10 would belong to one specialty, and 11 - 13 would belong to another. While indexing, the controller will look for loaded plugins and add it into a global model. The global model will dynamically load tabs onto the layout page where the user can go to different pages based on the loaded plugin.[image:]

[bookmark: _Toc88589204]High Level Design to Execute Plugin Feature “Repair”

New/Proposed Flow
Repair will have two outputs; it will either be a returnable file to be viewed by the user, or an alert notifying the user that the file must be downloaded. The controller first tries to repair the file using NLP. If the file is too corrupted to repair, the controller will notify the user to download the file. The reason why the controller initially does not download the file is because the time to download is costly, thus making it more ideal to repair.

[image: Diagram

Description automatically generated]

[bookmark: _Toc88589205]High Level Design to Execute Plugin Feature “Scan”

New/Proposed Flow
The scan feature allows a physical document(s) to be scanned by a hardware scanner, and then saved into EFM. Clicking the "Scan" button will trigger a button action that calls the controller. The event handler will then invoke the twain drivers on the local computer, to utilize the connected scanner. Finally, the scanned document is saved into EFM.
[image: Diagram

Description automatically generated]

[bookmark: _Toc88589206]High Level Design to Execute Plugin Feature “Search”

New/Proposed Flow
Search allows a user to return a view with specific files associated with two user inputs: an account number and a date range. User enters either date range or account number into a razor form (account number only supports alphanumeric characters), then once the search button is clicked, date range or account number is sent to a controller. The controller generates a query that searches tables in the backend for the files associated to the inputs. If the query is valid, it returns a view with files associated to valid query. Invalid queries return the user to the starting razor form view.
[image: Diagram

Description automatically generated]

[bookmark: _Toc88589207]High Level Design to Execute Plugin Feature “View”

New/Proposed Flow
The purpose of the view feature is to allow the user to view the file associated with a row that is displayed on a web page, respective to a database record. Clicking the “View” button executes the view function. This action sends a request containing the file ID to the controller. The controller then retrieves the file from a repository. Once the file is retrieved, the file is opened and displayed in a new window. If the file is not found, a new window will display the error message “File Not Found”.
[image:]

8
QTC Management, Inc. Confidential			
image1.jpeg
Quality.

®
TC Timeliness.

Customer Service.

A Leidos Company

image2.png
Choose a Line of Business

i . i Narrative
. éagnosncs) égnedzm) <Repon)

. . i Narrative
. éagnosucs) égnedzm) <Repon

Date Range

image3.png

image4.png
The plugin will include
the business logic needed
to query the data

Plugin

EIETEN — Business Logic - DataModel

Entity Framework Core or The queries defined within the
Dapper to process the query business logic will confine with
statements and create a the structure of the data

database connection model

image5.png
AllPlugins_ServiceObject - Members

Collection Of
Loaded Plugins
_| (Installed Lines
of Business)

C00

|

Assembly Plugin
(Members)

Member Fields

Features - List

Line of Business - String

Roles - List

Security Levels - Array of Key Value Pairs
(Security Level -> Features)

Method Name: Method Name: Method Name: Connectioninfo - Array of Key Value Pairs
RetrieveLinesOfBusiness | |RetrieveFeatureNames ExecuteBusinessLogic (External Systems Connection Strings)
Methods (Abstract)
Input Arguments: Input Arguments: Input Arguments: Delete
Roles, LineOfBusiness Roles Confirm
Security Levels Roles Security Levels Index
Security Level Line Of Business Repair
Feature Name Import
Data(Params) Scan
. View
Returns: Returns: Void:
Line(s) of Business Feature Names Executes Business Logic

AllPlugins_ServiceObject -
Members

e

image6.png
Start.cs
Inject Plugin
Objects

| Load Plugin/.dlls

image7.png
services.AddSingleton<AllPluginObjects, Al1PluginObjects>();

image8.png
AllPlugins_ServiceObject - Members

Collection Of
Loaded Plugins
_| (Installed Lines
of Business)

C00

|

Assembly Plugin
(Members)

Member Fields

Features - List

Line of Business - String

Roles - List

Security Levels - Array of Key Value Pairs
(Security Level -> Features)

Method Name: Method Name: Method Name: Connectioninfo - Array of Key Value Pairs
RetrieveLinesOfBusiness | |RetrieveFeatureNames ExecuteBusinessLogic (External Systems Connection Strings)
Methods (Abstract)
Input Arguments: Input Arguments: Input Arguments: Delete
Roles, LineOfBusiness Roles Confirm
Security Levels Roles Security Levels Index
Security Level Line Of Business Repair
Feature Name Import
Data(Params) Scan
) View
Returns: Returns: Void:
Line(s) of Business Feature Names Executes Business Logic

AllPlugins_ServiceObject -
Members

e

image9.png
Roles

Username Security Levels
Line(s) Of Business

. Roles
Landlng Usernam ecurity Levels
Page Line(s) Of Business
(For Each Plugin)
Line of Business Line of Business
Enabled Features Enabled Features

Al1Plugins_Service_Objec

Roles
Security Levels
Line Of Business

Line of Business
Enabled Features

image10.png
Roles

Security Levels
Line Of Business
Feature Name

Data{Params)
Roles
Security Levels
Line Of Business
Feature Name
Data{Params)
Business Logic
(Executes)
Roles
Security Levels . . .
. Line Of Business———————|Al1Plugins_Service_Object

Feature Name
Data{Params)

image11.png
‘Confirm'

Confirm ' button is button clicked

enabled

'Index' button 'Confim' button
clicked is disabled

image12.png
FilelD

Delete Button
Is clicked

EFM filters out files that have been renamed from being displayed

image13.png
Checks the
name of the
file

user
imports
afile

image14.png
After clicking
Index, bring up a
window asking
the user to
specifiy page
range and count

Index will look for loaded plugins
and add it to a global model
"Webpages"

The global model will dynamically
load tabs on the layout page where
the user can go to different pages
based on the loaded plugin

AllPlugins_Service_Object

image15.png
Repair Button
Is clicked FILEID

Let User
View File
Yes
Notify |
DL‘I)Sn?,; |ng «—No— Successful?
File

image16.png
ButtonAction

pdf OR docx Eventhandler

Document

image17.png
Account number Search Button
Date Range ’ Is clicked

Query:
AccountNumber
Date Range

Query result

image18.png
Display File In

View
Button
Clicked

If File Found

New Window

Display Error

If File NOT Found

Message “File Not
Found"

Look For File

File Repository

