
Team Leads
First off, take a deep breath and get ready to read and learn a lot of new things. Take it 1 step at
a time and meet your team. We had 10 people, so we split everyone up into 4 teams. Team lead
role is to look at all the stops and plan/manage similar to a scrum master. There’s a lot to do
such as actually working on the telescope and troubleshooting. #1 was just setting a weekly
schedule to meet with both liaisons and advisors. Play to people's strengths and weaknesses
and where they want to go. We spent 1 semester researching, reading, and preparing sprints,
and the 2nd semester working on the code and keeping track on Jira. We saw the previous
team use a Python Virtual environment, and it didn’t work properly so we just swapped to
Anaconda with explicit instructions, (Note the YAML file). Take a realistic expectation and try to
chip work on a portion of the project. Also as team leads don’t forget to work on where they
need a body like I jumped into Telescope Integration by helping set up the Telescope and
working on hands-on experience with the hardware/software. If someone needs help, you go
help them and don’t be an ass or make conflicts. When it was time to graduate, we had to
merge all files together and test run it. Don’t forget to take time to look for an internship/job.

3D Modeling:
To the next team focusing on the 3D modeling, I'd like to note the following:

Last thing we did in regard to 3D modeling was fixing the camera angle toward the nearest point
on the Moon using an API provided by JPL (Please refer to CSULA Telescope Project API
Calls). Second, we left comments on the code we wrote to leave information on the approaches
we took to either add or improve 3D modeling features. In addition, we optimized the code for
the side menu that allows users to toggle between data layers. We were also attempting to
extract Exif data from a picture so that we could more conveniently process the data without
having users fill out HTML forms, but couldn't implement this feature due to time constraints.

If you took the computer graphics course, chances are you used WebStorm or Visual Studio to
write your code. I would recommend using one of these programs because they highlight the
code, making it easier to read and understand the purpose of the code as opposed to PyCharm,
which doesn’t highlight the JavaScript portions of a code file.

Next, I'd recommend also getting a picture of the Moon, while also noting down the time and
location (lat, lon) of the screenshot in case the picture doesn't have that information available in
the form of Exif data. We ran into issues during the process of making sure that the images we
took had the data inside the image so that we could pass them as parameters for the generation
of the 3D models. Embedding this data into the image is an important step in achieving Exif data
extraction.

When replicating the view of the Moon at a given geo location and time, we saw that the 3D
render wasn't as accurate as we wanted it to be, so we considered aligning the 3D models of
the Moon and Earth to get better results. For aligning the models, we were going to use

quaternions, but time constraints created a roadblock for us to learn the implementation, so for
the future team, we recommend researching quaternions and to consider using them if the 3D
render of the Moon isn’t an accurate replication of what is provided in the user’s screenshot.

User Interface/User Experience:
To the next team focusing on User Interface:

While we were able to make a lot of improvements towards the User Interface/Experience, there
were a few shortcomings with our overall goals for the project. The main issue to keep in mind
for this year is the mobile implementation. Unfortunately for us, we learned a bit later on in the
project that all the CSS for the application as a whole was on one page, meaning we had to deal
with over 11,000 lines of code. What we recommend is to take a bit of time to recognize what
portions of code are needed for each page and try to splice it in a way to allow for each page to
have it’s own CSS page (EX: About.html would have its corresponding About.css, etc… for
every other page)

We had originally tried to attempt to do this ourselves; however, we began trying to separate
everything too late in the project’s lifecycle, thus we were unable to get any progress towards it
done. We did have to add new CSS in order for the newly implemented about page to work as
well as the Connect page for the Telescope Integration team, however that was all added to the
bottom of the css page and commented accordingly. If this team is unable to splice everything to
work properly, at least try to understand what everything does and comment on anything that
you feel is important.

While reviewing our implementation, you will see inline bootstrap. We were trying to stray away
from this because it makes it difficult for future teams to understand. Taking out the bootstrap
and using strictly CSS was our goal. However, we were not able to do so due to time
constraints. You will notice that the layouts in each page are in a grid format. There are features
in Connect.html that need to be reviewed. Keep in mind that this page is unfinished and ready to
be built upon. Lastly, read up on the CSRF token. This is a crucial piece in the integration of
Django and the html pages.

Telescope Integration:

Our work was done on the Connect page which holds a container meant for the live feed from
the telescope. Currently, there’s a placeholder image of the moon which you can screencap,
save, then upload it with the right container which allows for image input. We had planned for a
way to display the live feed directly to the Connect page, be able to take a screenshot of what is
being displayed, and have a button that directly uploads to the MoonTrek DB and grabs that last
uploaded image to navigate the user to the registered image. The problem with this approach is
that we could not figure out how to obtain the live feed from the telescope we worked on in a
way where we can add it to the Connect page. Additionally, we could not have a button grabbing
the last uploaded photo from MoonTrek’s uploaded images because of a built-in security issue.
From what we researched, this has nothing to do with the implementation, it’s just how the code
and file manager works to prevent code from being able to access an application’s files; a
security risk.

What we decided to do is leave a placeholder image representing the live feed for you to
implement. We had to figure out a solution to working with the telescope after running into
issues, which meant we had to put the live feed display functionality on the backburner. We
used other software and hardware to display the telescope view, but capturing a photo or video
would have to be done aside from MoonTrek rather than through MoonTrek. We would
recommend finding a better way to view the telescope’s pov in such a way that it can be
displayed onto MoonTrek. So now let’s talk about the telescope and how we ended up working
with it to view what’s being displayed.[]

what you recommend for next year's team
-closing remarks
-what things you would like them to know on what to build upon
-Things you didn't get to and list them
-ideas you couldn't finish

Image Registration Processing:
To the next team focusing on Image Registration Processing:

After removing some lines of code from the views page there should be nothing outside of the
imageProcedure page. All of the process that makes up the image registration process is in that
page inside of the processUserImage function. The function can be divided into two parts. The
first part is the circle detection. In this section, you are trying to look for circles inside of the
image given to you. We pick the largest circle as our the one used for the rest of the process.
There is some improvement that can be done in this section. Specifically, trying to add tresh
holds to allow for some images to process, image 88. Another thing is the opening and closing, I
believe this got cut due to time but it can help with some images in the circle detection process.
Code for threshold and opening/closing
thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]

kernel = np.ones((25, 25),np.uint8)
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)

The other are of improvement would be the image registration. From our point of view, there is
not a lot that can be done here but you can try to implement FLANN or AKAZE instead of SIFT
to see what you get. The issue with those is that it can be hard to integrate with the warp portion
of the code.

The thing that needs to be a focus to improve the image registration is the model_3d function
and what comes with it. Since the other group in the 3D model manage to create the model of
the Moon and Earth, you can now try to connect their work with the image registration process
in order to really increase the probability of an image being register. We currently only use one
image of the Moon in different sizes as our base for all comparisons but with the 3D portion of
the project we might be able to get more images that can be use as the base.

