
Software Design
Document

for

Operationalize Networked
Collaboration Features for Moon

Trek
Version 1

Prepared by: Sean Chung, Aldo Gil I, Tommy Lay, Allen Marquez, Tam
Nguyen, Alex Sahakian, Andy Tsan, Srivats Venkataraman, Jian Wu, Anna

Yesayan

Sponsored by NASA JPL

April 30, 2022

1

Revision History 3

1. Introduction 3
1.1 Purpose 4
1.2 Document Conventions 4
1.3 Intended Audience and Reading Suggestions 4
1.4 System Overview 4

2. Design Considerations 5
2.1 Assumptions and Dependencies 5
2.2 General Constraints 5
2.3 Goals and Guidelines 5
2.4 Development Methods 5

3. Architectural Strategies 6

4. System Architecture 10
4.1.1 The User Interface Module 10
4.1.2 The Main Module 10
4.1.3 The Chat Module 10
4.1.4 The Tools Module 11
4.1.5 The Imports/Exports Module 11
4.1.6 The States Module 11
4.1.7 The Collaborative Session Module 11
4.1.8 The WebSocket Server Module 11

5. Policies and Tactics 13
5.1 Specific products used 13
5.2 Requirements traceability 13
5.3 Testing the software 13

6. Detailed System Design 18
6.1 User Interface Module 18
6.2 Main Control Module 19
6.3 Chat Module 20
6.4 Tools Module 21
6.5 Imports/Exports Module 22
6.6 State Module 23

2

Revision History

Name Date Reason For Changes Version

Sean Chung 11/6/2021 Inserted all the information for section
#2

0.1

Sean Chung 11/7/2021 Architected the layout for section #3 and
began inputting the first half of the data
according to the previous SDD.

0.1

Srivats
Venkataraman

11/8/2021 Added Section 6.6 - 6.7 0.1

Tam Nguyen 11/10/2021 added section 5-6.3 0.1

Allen Marquez 11/10/2021 Added part 2 of section 3 0.1

Alex Sahakian 11/10/2021 modified section 8 and 9 0.1

Srivats
Venkataraman

11/11/2021 Completed section 1, Introduction 0.1

Anna Yesayan 11/11/2021 Added to section 8-9 0.1

Whole Team 04/30/2022 Updated sections to match changes
made to code base

1

3

1. Introduction
1.1 Purpose

This document will focus on the software design used to build the collaborative features
for Moon Trek Lite (MTL). The purpose of the collaborative features is to allow users to
share in real time exploration of planetary bodies using actual data from the Jet
Propulsion Laboratory (JPL).

1.2 Document Conventions
- The title for each section is Times New Roman, with font size 20.
- The subtitle for each section is Times New Roman, with font size 14.
- The body and bullet points for each section is Times New Roman, with font size 14.

1.3 Intended Audience and Reading Suggestions
This document is for project managers, developers, users, document writers and people
with some background in computer science. This includes staff, faculty, advisors, NASA
JPL liaisons. The recommended sequence for reading is start with the introduction then
move to a topic the user is interested in.

1.4 System Overview
This software is identified as the Networked Collaboration Features for Moon Trek
(NCFMT). NCFMT shall provide collaborative markup of 3D solar system terrain such
as the creation of waypoints, rapid navigation toward waypoints, text annotations, and
freely drawn “ink” annotations on the new Moon Trek Lite application. NCFMT shall
also provide “rooms'' that let the user markup and share different states of 3D solar
system terrain simultaneously, communicate via a text communications system, and
create waypoints for rapid navigation. Upon release, NCFMT shall be completely open to
the public and be used for scientific research, mission planning, educational purposes,
and general exploration

4

2. Design Considerations

2.1 Assumptions and Dependencies
● Consumers of the software are expected to have consistent access to a stable internet.
● Consumers are also expected to be familiar with using the internet and the basic input

devices of computers: mouse, keyboard, etc.
● Consumers may need to install the WebXR Emulator extension since certain browsers

may not simulate the WebXR API. The extension allows users to run WebXR content
without the need to use an XR device.

2.2 General Constraints
● Hardware Limitations: Since web browser may need to render a large amount of

graphics, users will need to get a more powerful GPU component if they wish to run the
software smoothly.

● Network Constraints: Users will need a stable internet connection because WebSockets
drowns in performance during high latency.

● WebXR Limitations: While WebXR does provide users with VR capabilities, web
browsers may struggle to keep up with the software because of a lack of stable/unstable
technologies.

2.3 Goals and Guidelines
Because our group is carrying out the AGILE process, we focus more on usability rather
than readability. As a result, we may be sacrificing good documentation to create more
prototypes and usable software.

2.4 Development Methods
The project uses the AGILE development model. As a result, we perform weekly
SCRUM meetings with our advisor and the JPL team via ZOOM to relay and receive
information. We are organized into small teams that can continuously put out new
features and updates. Additionally, we can also output new changes based on demand.

5

3. Architectural Strategies
● Programming Languages

○ HTML/CSS
○ Java
○ TypeScript

● Data Communication
○ Java Web Socket
○ Local Storage
○ States

● Library
○ Material components
○ Java WebSockets
○ Jersey

● Reuse of existing software components to implement various parts/features of the system.
○ Reuse of existing software

■ MoonTrek, Solar System Trek(SST)
○ Components to implement

■ Sessions
● Collaboration in session rooms
● Textbox communication

○ Users can communicate with each other through the system
via text.

● List of attendees in the current session
■ Session authentication

● Software will make use of a pre-generated session id, that can be
shared.

■ Session States
● Members within a session will be able to create/switch states.
● States are layers will different data information
● All members within the session will be able to create session

states.
■ Annotation

● Users can choose from a variety of tools to create annotations on
the current map

■ Chat
● Users can communicate with other members in the session using

text

6

■ Flyto
● Individual users will be able to easy navigate the map using

latitude & longitude
■ Waypoints

● Users will be able to pinpoint important locations on the map
● Future plans for extending or enhancing the software

○ Implement a software update giving users capabilities to render 3D models
○ Make use of a state management system

● Error detection and recovery
○ None implemented as of right now

● Memory management policies
○ Data retention policies

■ Data will be temporarily saved during each session
■ The system will allow users to revisit previously used data from the

current session
● External databases and/or data storage management and persistence

○ Not applicable
● Distributed data or control over a network

○ A java servlet will be used for WebSocket connections
○ A separate server will run a database connected to the java servlet
○ The java servlet will be run on a Tomcat server

● Generalized approaches to control
○ SSH access to the java servlet servers

● Concurrency and synchronization
○ A WebSocket server is asynchronous in that it can handle multiple WebSocket

connections in parallel
■ While the WSS connection is active, synchronization between the client

and web server shall be achieved with serialization and processing
● Communication mechanisms

○ WebSockets
○ HTTPS Requests

● Management of other resources
○ Not applicable

7

4. System Architecture

Figure 4-1. Context Diagram, DFD Level 0

On surface-level, the software application must receive input from a user then respond by
fetching the correct data. The recipients would receive the information delivered from the
modules. The system was architected so that each module represents a core feature in the user
experience.

4.1.1 The User Interface Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.2 The Main Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.3 The Chat Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.4 The Tools Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.5 The Imports/Exports Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

8

4.1.6 The States Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.7 The Collaborative Session Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.8 The WebSocket Server Module
Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

Figure 4-2. Level 1 DFD

9

5. Policies and Tactics

5.1 Specific products used

● IDE: Visual Studio Code, NetBeans 8 IDE.
● Library: Angular, Material library, Java WebSockets, JavaScript(Fetch API).

5.2 Requirements traceability

● Requirements are often discussed in meetings with JPL. After coding and testing, the
team goes back to the SRS document to see what requirements have been met. The
requirements not met will be brought up with JPL.

5.3 Testing the software

5.3.1 Testing the features of the modules
● Sessions

○ Test the various platforms the software supports.
■ PC, Mac, mobile

○ Test input textbox
■ Have clients spam textboxes and provide invalid input.

● Discover limitations to be fixed and debugged.
5.3.2 Engineering trade-offs

● Sessions do not currently support VR/AR capabilities.

5.3.3 Coding guidelines and conventions
● Coding Guidelines

○ Code must have uniform indentations for readability.
○ Functions must have a comment at the head describing their purpose.
○ If possible, avoid brute force search algorithms. (Look for more optimal

methods)
● Conventions

○ Commented description of the script's purpose at the head of the code.

5.3.4 The protocol of one or more subsystems, modules, or subroutines
● Due to this software being built upon existing software, communications between

interfaces shall occur through JavaScript code and various implemented modules
such as:

10

○ JSON parsers
○ API responses

● The software shall require a web browser and use WSS over HTTPS, ensuring fully
encrypted communication via SSL. The software shall also query data from JPL’s
APIs in the form of JSON and/or text/file format. While the WSS connection is
active, synchronization between the client and web server shall be achieved with
serialization and processing. Although WebSockets allow for a low-latency and
full-duplex communication system, data transfer issues may arise when used in
large-scale systems. The software system’s backend web server shall also require
a fast database, which shall assist in the prevention of network bottlenecks. This
software shall also include a chatroom service, allowing users to communicate via
text in real time.

5.3.5 The choice of a particular algorithm or programming idiom (or design
pattern) to implement portions of the system's functionality

● Not applicable

5.3.6 Plans for maintaining the software
● The system shall use libraries compatible with the existing SST system. This is

done to ensure a smooth transition from the testing server to JPL’s server in final
transition deployment.

● JPL is responsible for maintaining the software upon delivery.

5.3.7 Interfaces for end-users, software, hardware, and communications
● Some software interfaces include:

○Tomcat 7.0.59,
https://archive.apache.org/dist/tomcat/tomcat-7/v7.0.59/bin/

■ Used for testing the software environment through
localhost.

○ Esri ArcGIS API for Javascript Version 4.X,
https://developers.arcgis.com/javascript/3/jssamples/

■ Used for 2D visualization.
○ Java WebSockets, latest version found at
https://docs.oracle.com/javaee/7/tutorial/websocket.htm

■ Used for transferring data from client to server in real-time and with
low latency.

○ Existing APIs in use in the existing Trek Lite application.
■ Used for transferring data from client to server in real-time and with

low latency.

11

https://archive.apache.org/dist/tomcat/tomcat-7/v7.0.59/bin/

○ NetBeans 8.2 version can be downloaded for windows
from:https://netbeans-ide.informer.com/8.0/

5.3.8 Hierarchical organization of the source code into its physical components (files
and directories).

● Most of the front end ui code is under
○ moontrek_frontend\src\app\components

● For the material components, websockets they are located under
○ moontrek_frontend\src\app\services

● There is no need to look at the other directories since they are mostly library files
used to create a build.

● Most of the back end code logic code is under
moon_trek_backend\src\main\java\gov\nasa\jpl\trek\model

5.3.9 How to build and/or generate the system's deliverables (how to compile, link,
load, etc.)
1. Steps

1.1. Installing Node.js and Npm
1.1.1. Follow the directions in this link https://www.npmjs.com/get-npm to

install. Make sure that you install the latest version. Installing the
LTS version of Node will also install npm.

1.1.2. Run the executable to add Node.js to your system. To check if it’s be
added successfully open terminal/command prompt and enter node -v

“Welcome to Node.js latest version”. Exit the Node terminal by pressing
CTRL+C twice or by typing “.exit”.

1.1.4. After exiting out of the node terminal, type “npm version” in the
command prompt. It should display all of the npm packages you
have
installed along with their versions.

1.2. Cloning the moontrek_frontend repository using Git
1.2.1. Create a new folder in a directory you would like to store your

application and name it “moontrek_frontend” .
1.2.2. Using Git Bash, navigate to the directory of your newly created folder

and enter the command (without quotation marks):
“git clone https://github.com/srivats22/moontrek_frontend.git”.

1.2.3. Using your command prompt, navigate to the directory of your cloned
application and enter the command, “npm install”.

1.2.4. After entering “npm install”, type “ng serve”. This will launch the
application on port 4200, which is the application’s default number.

12

https://netbeans-ide.informer.com/8.0/
https://github.com/srivats22/moontrek_frontend.git

1.3. Installing Moseif CORS Changer
1.3.1. To use the Moontrek_frontend application, a Chrome extension called

Moseif CORS changer must be installed. Navigate to the Chrome
Extension Store and

install the Moseif Origin & CORS Changer extension.
1.3.2. Turn on the extension when you are in development. Warning: Do not

visit any sketchy website, as this extension opens up many security
risks such as cross site requests. Turn off when finished.

1.4. Accessing Moontrek_frontend
1.4.1. Once the application is launched using “ng serve”, you can test it out

on your browser by navigating to
“http://localhost:4200/?e=135.9,-6.1,140,-3.5&l=Mars_Viking_MDIM21_Cl
rMosaic_global_232m,true,1&l=curiosity_hirise_mosaic,true,1&b=mars”.

Note that it is
“http” not “https”.

1.4.2. Go to
“http://localhost:4200/?e=135.9,-6.1,140,-3.5&l=Mars_Viking_MDIM21_Cl
rMosaic_global_232m,true,1&l=curiosity_hirise_mosaic,true,1&b=mars” to
run it.

5.3.10 Tactics such as abstracting out a generic DatabaseInterface class
Database structure was not set up. Refer to Section 8 for details.

13

6. Detailed System Design

6.1 User Interface Module

6.1.1 Responsibilities
The User Interface Module serves as the messenger between the user and the Main
Module. It provides a graphical user interface (GUI) for the user and allows the user to
interact with the entire system.

6.1.2 Constraints
Some constraints may include a limitation of space for additional widgets and/or possible
obstruction of views from other elements in the application. There may also be a very
high number of entities which may require additional graphical processing power.

6.1.3 Composition
The User Interface Module shall be composed of various widget-like components
following Material Angular design language. Each User Interface Module shall consist of
simple HTML and CSS elements, all of which can be accessed by their corresponding
lower level modules.
The components are listed below.

1. Chat Component
a. The Chat Component will consist of a main chat box for containing all

chat messages.
b. The Chat Component shall consist of a text input box for sending

messages.
c. The Chat Component shall consist of a single button used to send

messages.
2. Tool Component

a. The Tools Component shall consist of a dropdown bar consisting of all
the collaborative states in the session.

b. The Tools Component shall consist of buttons indicating a variety of
tools: free-hand drawing, polylines drawings, circles, squares.

c. The Tools Component shall reveal additional attributes for each button
allowing for additional modifications on the markup. Some attributes
include drawing sizes, color, and width of lines.

3. Import/Exports Component
a. The Import/Exports Component shall consist of an import button and an
export button.

4. States Component
a. The States Component shall consist of all of the markups and entities
that have been placed on the 2D terrain.

5. Collaborative Sessions Component
a. The Collaborative Sessions Component shall consist of a single button which

14

reveals a modal.
b. The modal shall have two buttons: joining and creating a collaborative
session.

6.1.4 Uses/Interactions
The user will input data into the system via click events, scroll events, and key press
events.

6.1.5 Resources
This module requires a miniscule amount of memory within the user’s browser and a
sufficient GPU to render additional entities or markups.

6.2 Main Control Module

6.2.1 Responsibilities
The Main Control Module serves as the main component where all of the Collaborative
Visualization for Solar System Trek (CVSST) modules are instantiated and initialized. It
also handles all user input and directs the data to the correct modules for additional
processing.

6.2.2 Constraints
There have been no constraints identified at this time.

6.2.3 Composition
The Main Control Module shall consist of functions which initialize modules 6.3, 6.4,
6.5, 6.6, and 6.7.

6.2.4 Uses/Interactions
The main control module will handle events from the UI. Based on the commands, it will
interact with the chat module, tools module, imports/exports module, or states module.

6.2.5 Resources
This module requires a miniscule amount of memory within the user’s browser.

6.3 Chat Module

6.3.1 Responsibilities
The Chat Module shall obtain data directly from the user interface and update the user
interface with new data from module 6.7. This module shall handle all chat events from
the UI, update the chat box with data from the session, and send new data to the session,
which will go to the server.

15

6.3.2 Constraints
The constraints are character limits and number of messages that can exist in a
collaborative session at once. Depending on the amount of data being sent, network
latency and memory usage may increase. A maximum of 500 characters per message
shall suffice.

6.3.3 Composition
The Chat Module shall consist of functions which send data to the collaborative session.
It will also contain functions which handle new data that is sent from the session,
functions that update the UI, and functions that obtain data from the UI.

6.3.4 Uses/Interactions
When there is a message being sent via text, the Main Control Module will handle the
event and call functions within the Chat Module which retrieve user input from the UI.
Once the input is validated, the data is sent to module 6.7 for processing then to module
6.8 for storage into the database. The WebSocket server will recognize the data, store it in
the database, and send the new entry to all users in the same collaborative session. When
the WebSocket Server Module receives this new entry, the data will be sent back to the
Chat Module to update the UI accordingly.

6.3.5 Resources
This module requires a chat box which will contain all chat messages, an input text form
for user chat messages, and a send button to send the messages.

6.4 Tools Module

6.4.1 Responsibilities
The Tools Module shall provide collaborative functionality for tools such as creating
markups, drawing on 2D terrain, and creating waypoints. This module shall receive data
from the user via inputting it into the user interface. It shall update the tools component
and send all necessary data to the states module to carry out the necessary update. The
module shall also display which tool is currently in use.

6.4.2 Constraints
The user will be limited to a certain number of tools that can be used concurrently. There
will be limits to the attributes of the markup data pertaining to the colors, line types, and
size. The data that is input for waypoints will also need to be valid as well.

6.4.3 Composition
This module will consist of components that help to create the various types of markups.
There will also be a set of functions that sends and receives data of the waypoints.

16

6.4.4 Uses/Interactions
The user shall select a tool to use with the 2D terrain. Currently, it is only supported for
2D, but there will be support for 3D terrains in a future version. Depending on the tool
the user selects, they may have to select a location on the terrain to mark or draw on. The
tools module keeps track of the tool selected, as well as the attributes and location of the
markup defined by the user. The module will send the data of the attributes and location
of the markup to the State Module to be rendered, as well as the Collaborative Session
Module to display to other users.

6.4.5 Resources
This module will require the use of existing SST functions including polyline, entity
placement, and fly to functions. The user’s GPU will be used to render the markups and
drawings.

6.5 Imports/Exports Module

6.5.1 Responsibilities
The Imports/Exports Module will handle all configuration imports and exports for states.
The module shall allow users to export their configurations in formats such as text format
or a properties file to be imported for future use.

6.5.2 Constraints
There may be limits to how much a file can store. Files may also grow very large in size,
which makes exporting and importing the data take a longer length of time. This may also
slow down the system.

6.5.3 Composition
The module shall consist of functions that handle the reading and parsing of the
configuration file to import the data. This data may also be passed onto the States Module
to update and show the preset configuration. The module shall also consist of functions
that collect data and write it to the file so that the data can be exported.

6.5.4 Uses/Interactions
The user is able to download and export their data from their current session and save it
into a configuration file. The user may also import previous configurations from a file
into the session and display the previous configurations.

17

6.5.5 Resources
The module will read data to obtain the configurations using the browser’s memory.

6.6 State Module

6.6.1 Responsibilities
Users can choose to save their sessions for future references. A user can also go back to a
previous session by choosing a state. For the definition of a state, please refer to Software
requirement documentation.

6.6.2 Constraints
1. Where to save the states
2. The number of states we can save
3. The time it takes to load a previous state
4. How we want to save the state

6.6.3 Composition
Not applicable.

6.6.4 Uses/Interactions
The state module is used by the main module. This would make use of our backend
communication to save and retrieve a user’s saved session.

6.6.5 Resources
Utilizes our backend communication module and the memory of the machine to save the
state.

6.6.6 Interface/Exports
Will be updated later once we get more info.

6.7 Collaborative Session Module

6.7.1 Responsibilities

18

The collaborative session module is the main source of data transfer. It’s responsible for
sending and receiving data from our backend. It also transmitted the following: Chat
Module, Tools Modules, and Import/Export module.

6.7.2 Constraints
Large sessions might take a long time to save and read. Network speed might be another
thing to consider for a smooth experience. Running multiple sessions on our servers would
be another thing to consider. Apart from this, we might also want to consider saving some
sessions in cache memory to ensure faster loading.

6.7.3 Composition
This module will contain methods that can send and receive data to the backend server
module.

6.7.4 Uses/Interactions
When change is made in the current session, data is sent to our backend server and the new
data is passed on to other users in the same session. This will happen in real-time so there is
no delay.

6.7.5 Resources
A backend server is required. Based on a timestamp the UI can get updated. We also need
to ensure multiple data is not sent at once cause this could lead to a crash.

19

7. Detailed Lower level Component Design

7.1 Annotation Module

7.1.1 Classification
Features

7.1.2 Processing Narrative (PSPEC)
Have the cors extension enabled

7.1.3 Interface Description
Users have a variety of tool choices, upon choosing a tool the user can change the width
and color of the tool.

7.1.4 Processing Detail
The module is loaded once the application has been loaded.

7.1.4.1 Design Class Hierarchy
Tool parent view.

7.1.4.2 Restrictions/Limitations
Not applicable.

7.1.4.3 Performance Issues
Not applicable.

7.1.4.4 Design Constraints
Not applicable.

7.1.4.5 Processing Detail For Each Operation
Handles sending, receiving and updating the user screen.

7.2 Chat Module

7.2.1 Classification
The kind of component, such as a subsystem, class, package, function, file, etc.

7.2.2 Processing Narrative (PSPEC)
Users must be assigned to a room to be able to use the chat functionality

7.2.3 Interface Description

20

The Chat User Interface is hidden within the side panel and can be accessed by pressing the
“menu” button.

7.2.4 Processing Detail
Before a message is sent, it is checked to make sure it is not an empty string. If nothing is
typed, when hitting the send button, nothing will be sent.

7.2.4.1 Design Class Hierarchy
Class inheritance: parent or child classes.

7.2.4.2 Restrictions/Limitations
Users are not able to send each other images, attachments, hyperlinks, etc. Chat module is
strictly used for sending text messages. As well as when holding down a specific letter it
only prints once.

7.2.4.3 Performance Issues
If a user spams the chat box, this will break the chat feature for the entire session.

7.2.4.4 Design Constraints
There are no design constraints.

7.2.4.5 Processing Detail For Each Operation

7.3 Collaborative Room Module

7.3.1 Classification
The front end consists of a collabSession folder in the component modules. In the back end,
the room session in the jpl package.

7.3.2 Processing Narrative (PSPEC)
Not applicable.

7.3.3 Interface Description
In the Trek menu, specifically the room drop down tab, there are the tools to help users
create or join a session.

7.3.4 Processing Detail
The information from the front end user interface through the web socket server to call the
appropriate functions to create or join rooms.

7.3.4.1 Design Class Hierarchy
Not applicable.

21

7.3.4.2 Restrictions/Limitations
Not applicable.

7.3.4.3 Performance Issues
The feature may take up to a minute to generate a room ID (create a collaboration room).

7.3.4.4 Design Constraints
Not applicable.

7.4 States Module

7.4.1 Classification
The front end consists of a state folder in the component modules. On the other hand, the
back end consists of a state in the JPL package.

7.4.2 Processing Narrative (PSPEC)
Not applicable.

7.4.3 Interface Description
In the Trek menu, in the state drop-down there are the tools to help users create, add and
remove states.

7.4.4 Processing Detail
The information from the front end user interface through the web socket server to call the
appropriate functions to create, add and remove states.

7.4.4.1 Design Class Hierarchy
Not applicable.

7.4.4.2 Restrictions/Limitations
Not applicable.

7.4.4.3 Performance Issues
Not applicable.

7.4.4.4 Design Constraints
Not applicable.

7.5 Fly to
7.5.1 Classification
Front end: lat-long folder in component modules.

7.5.2 Processing Narrative (PSPEC)
Non applicable.

22

7.5.3 Interface Description
The user interface has a button that opens a text input box that allows the user to input
coordinates that will allow the user to pan the map and center at the specified coordinates.

7.5.4 Processing Detail
The coordinates that are collected from the input will be passed into a function to process
and pan over the map.

7.5.5.1 Design Class Hierarchy
Not applicable.

7.5.5.2 Restrictions/Limitations
Users must enter valid coordinates separated by a comma to be counted as a valid input.

7.5.5.3 Performance Issues
Not applicable.

7.5.5.4 Design Constraints
Not applicable.

7.6 Waypoints
work in progress

23

8. Database Design
No databases were used in this development phase of Trek Lite.

24

9. User Interface
9.1 Overview of User Interface
The user would enter the website and be welcomed by the website which would
offer a small tutorial to familiarize the user with the website’s user interface. The
website would present a series of buttons all around the screen that carry out a
function. There would be buttons to show and present small interesting facts
around the moon which also point to specific parts of the moon where the event
was made. In addition, there is the ability to login and create rooms where you can
have a live chat with everyone you invited.

9.2 Screen Frameworks or Images

25

9.3 User Interface Flow Model

provided user input.

26

10. Requirements Validation and Verification

Requirements Component

Chat Chat Component

Collab session Collaboration Component

Annotation Annotation Component

State State Component

Fly to Fly to Component

Waypoints Waypoint Component

27

11. Glossary
An ordered list of defined terms and concepts used throughout the document. Provide definitions
for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD
document. This information may be listed here or in a completely separate document. If the
information is not directly listed in this section provide a note that specifies where the
information can be found.

28

12. References

<List any other documents or Web addresses to which this SDD refers. These may include other
SDD or SRS documents, user interface style guides, contracts, standards, system requirements
specifications, use case documents, or a vision and scope document. Provide enough information
so that the reader could access a copy of each reference, including title, author, version number,
date, and source or location.>

Brad Appleton <brad@bradapp.net> http://www.bradapp.net

https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

29

http://www.bradapp.net
https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

