
Software Design
Document

for

Operationalize Networked
Collaboration Features for Moon

Trek
Version 0.1

Prepared by: Sean Chung, Aldo Gil I, Tommy Lay, Allen Marquez, Tam
Nguyen, Alex Sahakian, Andy Tsan, Srivats Venkataraman, Jian Wu, Anna

Yesayan

Sponsored by NASA JPL

Dec 3, 2021

1

Revision History 3

1. Introduction 3
1.1 Purpose 4
1.2 Document Conventions 4
1.3 Intended Audience and Reading Suggestions 4
1.4 System Overview 4

2. Design Considerations 5
2.1 Assumptions and Dependencies 5
2.2 General Constraints 5
2.3 Goals and Guidelines 5
2.4 Development Methods 5

3. Architectural Strategies 6

4. System Architecture 10
4.1.1 The User Interface Module 10
4.1.2 The Main Module 10
4.1.3 The Chat Module 10
4.1.4 The Tools Module 11
4.1.5 The Imports/Exports Module 11
4.1.6 The States Module 11
4.1.7 The Collaborative Session Module 11
4.1.8 The WebSocket Server Module 11

5. Policies and Tactics 13
5.1 Specific products used 13
5.2 Requirements traceability 13
5.3 Testing the software 13

6. Detailed System Design 18
6.1 User Interface Module 18
6.2 Main Control Module 19
6.3 Chat Module 20
6.4 Tools Module 21
6.5 Imports/Exports Module 22
6.6 State Module 23

2

Revision History

Name Date Reason For Changes Version

Sean Chung 11/6/202
1

Inserted all the information for
section #2

0.1

Sean Chung 11/7/202
1

Architected the layout for section
#3 and began inputting the first
half of the data according to the
previous SDD.

0.1

Srivats
Venkataraman

11/8/202
1

Added Section 6.6 - 6.7 0.1

Tam Nguyen 11/10/20
21

added section 5-6.3 0.1

Allen Marquez 11/10/20
21

Added part 2 of section 3 0.1

Alex Sahakian 11/10/20
21

modified section 8 and 9 0.1

Srivats
Venkataraman

11/11/20
21

Completed section 1, Introduction 0.1

Anna Yesayan 11/11/20
21

Added to section 8-9 0.1

3

1. Introduction

1.1 Purpose
This document will focus on the software design used to build the collaborative
features for Moon Trek Lite (MTL). The purpose of the collaborative features is to
allow users to share in real time exploration of planetary bodies using actual data
from the Jet Propulsion Laboratory (JPL).

1.2 Document Conventions

- The title for each section is Times New Roman, with font size 20.
- The subtitle for each section is Times New Roman, with font size 14.
- The body and bullet points for each section is Times New Roman, with font

size 14.

1.3 Intended Audience and Reading Suggestions

This document is for project managers, developers, users, document writers and
people with some background in computer science. This includes staff, faculty,
advisors, NASA JPL liaisons. The recommended sequence for reading is start with
the introduction then move to a topic the user is interested in.

1.4 System Overview

This software is identified as the Networked Collaboration Features for Moon Trek
(NCFMT). NCFMT shall provide collaborative markup of 3D solar system terrain
such as the creation of waypoints, rapid navigation toward waypoints, text
annotations, and freely drawn “ink” annotations on the new Moon Trek Lite
application. NCFMT shall also provide “rooms'' that let the user markup and share
different states of 3D solar system terrain simultaneously, communicate via a text
communications system, and create waypoints for rapid navigation. Upon release,
NCFMT shall be completely open to the public and be used for scientific research,
mission planning, educational purposes, and general exploration.

4

2. Design Considerations
2.1 Assumptions and Dependencies

● Consumers of the software are expected to have consistent access to a stable
internet.

● Consumers are also expected to be familiar with using the internet and the
basic input devices of computers: mouse, keyboard, etc.

● Consumers may need to install the WebXR Emulator extension since certain
browsers may not simulate the WebXR API. The extension allows users to
run WebXR content without the need to use an XR device.

2.2 General Constraints

● Hardware Limitations: Since web browser may need to render a large
amount of graphics, users will need to get a more powerful GPU component
if they wish to run the software smoothly.

● Network Constraints: Users will need a stable internet connection because
WebSockets drowns in performance during high latency.

● WebXR Limitations: While WebXR does provide users with VR
capabilities, web browsers may struggle to keep up with the software
because of a lack of stable/unstable technologies.

2.3 Goals and Guidelines

Because our group is carrying out the AGILE process, we focus more on usability
rather than readability. As a result, we may be sacrificing good documentation to
create more prototypes and usable software.

2.4 Development Methods

The project uses the AGILE development model. As a result, we perform weekly
SCRUM meetings with our advisor and the JPL team via ZOOM to relay and
receive information. We are organized into small teams that can continuously put

5

out new features and updates. Additionally, we can also output new changes based
on demand.

6

3. Architectural Strategies
● Programming Languages

○ HTML/CSS
○ Java
○ JavaScript

● Database
○ Types of information used by various functions

■ Coordinate Data
■ HTTP/JSON Requests
■ Mesh Data
■ Model Layer Data
■ Session Data
■ Text Data
■ WMTS Map Data

○ Frequency of use
■ On every host request in the session, data is pulled.

○ Accessing capabilities
■ Database access is done according to the current session host

and members.
○ Data Entities

■ Solr
■ ArcGIS

● Accumulo
■ Oracle

● Postgres
● Library

○ Bootstrap
○ Express
○ WebSockets

● Reuse of existing software components to implement various parts/features
of the system.

○ Reuse of existing software

7

■ MoonTrek
○ Components to implement

■ Sessions
● Collaboration in session rooms
● Textbox communication

○ Users can communicate with each other through
the system via text.

● List of attendees in the current session
● Session authentication (Password Entry)

○ The host has the option to create a password for
visitors to use to enter the session.

○ The host has the option to turn off/on the password
feature.

● Session States
○ The software will keep track of both present and

past layers along with entities from the on-going
session. (Session Owner Privileges)

● The software will give the users the ability to become
session admin, which allows them to determine what
participants can and cannot do.

○ Admins can change the session’s current
layer/entity.

○ Users can only use tools such as polyline or
annotations on layers/entities.

● Future plans for extending or enhancing the software
○ Implement a software update giving users capabilities to render 3D

models
● Error detection and recovery

○ Input Validation
■ The system will validate session passwords

● If the password is incorrect, it will prompt the user with
an error response.

● Memory management policies

8

○ Data retention policies
■ Data will be temporarily saved during each session
■ The system will allow users to revisit previously used data from

the current session
● External databases and/or data storage management and persistence

○ Not applicable
● Distributed data or control over a network

○ A java servlet will be used for WebSocket connections
○ A separate server will run a database connected to the java servlet
○ The java servlet will be run on a Tomcat server

● Generalized approaches to control
○ SSH access to the java servlet servers

● Concurrency and synchronization
○ Java servlet for the WebSocket server is asynchronous in that it can

handle multiple WebSocket connections in parallel
■ While the WSS connection is active, synchronization between

the client and web server shall be achieved with serialization
and processing

● Communication mechanisms
○ WebSockets
○ HTTP Requests

● Management of other resources
○ Not applicable

9

4. System Architecture

Figure 4-1. Context Diagram, DFD Level 0

On surface-level, the software application must receive input from a user then
respond by fetching the correct modules. The recipients would receive the
information delivered from the modules. The system was architected so that each
module represents a core feature in the user experience.

4.1.1 The User Interface Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.2 The Main Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.3 The Chat Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

10

4.1.4 The Tools Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.5 The Imports/Exports Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.6 The States Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.7 The Collaborative Session Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

4.1.8 The WebSocket Server Module

Check DFD 0 or DFD 1. A comprehensive explanation can be found in Section 6.

11

Figure 4-2. Level 1 DFD

12

5. Policies and Tactics

5.1 Specific products used
● IDE: Visual Studio Code
● Database: We decided against using MongoDB. There could also be a
better database and database design than MongoDB. A temporary
solution is to have users export data occasionally. A database will be
chosen later. Refer to Section 8 for more details.
● Library: Dojo Toolkit, Express, WebSockets, Bootstrap, CesiumJS

5.2 Requirements traceability
● Requirements are often discussed in meetings with JPL. After coding

and testing, the team goes back to the SRS document to see what
requirements have been met. The requirements not met will be brought
up with JPL.

5.3 Testing the software
5.3.1 Testing the features of the modules

● Sessions
○ Testing max capacity of session set by host.
■ Display error messages to users attempting to enter a full session.
○ Test the various platforms the software supports.

■ PC, Mac, mobile
○ Test input textbox

■ Have clients spam textboxes and provide invalid input.
● Discover limitations to be fixed and debugged.

○ Test Administration privileges
■ Ability to control what users can do in a room.
■ Go back and view past layers/entities.

● Test limitations of memory.
● Speed and consistency.

■ Ability to remove users from a session.
■ Ability to swap admin roles between a host and user.

5.3.2 Engineering trade-offs
● Sessions do not currently support VR/AR capabilities.

5.3.3 Coding guidelines and conventions

13

● Coding Guidelines
○ Code must have uniform indentations for readability.
○ Functions must have a comment at the head describing their
purpose.
○ If possible, avoid brute force search algorithms. (Look for more

optimal methods) ● Conventions
○ Commented description of the script's purpose at the head of the

code. 5.3.4 The protocol of one or more subsystems, modules, or subroutines

● Due to this software being built upon existing software,
communications between interfaces shall occur through JavaScript
code and various implemented modules such as: ○ JSON parsers

○ Database queries
○ API responses

● The software shall require a web browser and use WSS over HTTPS,
ensuring fully encrypted communication via SSL. The software shall
also query data from JPL’s APIs in the form of JSON and/or text/file
format. While the WSS connection is active, synchronization between
the client and web server shall be achieved with serialization and
processing. Although WebSockets allow for a low-latency and
full-duplex communication system, data transfer issues may arise
when used in large-scale systems. The software system’s backend web
server shall also require a fast database, which shall assist in the
prevention of network bottlenecks. This software shall also include a
chatroom service, allowing users to communicate via text in real time.

5.3.5 The choice of a particular algorithm or programming idiom (or design
pattern) to implement portions of the system's functionality

● N/A
5.3.6 Plans for maintaining the software

● The system shall use libraries compatible with the existing SST system.
This is done to ensure a smooth transition from the testing server to
JPL’s server in final transition deployment.

● JPL is responsible for maintaining the software upon delivery.

14

5.3.7 Interfaces for end-users, software, hardware, and communications
● Some software interfaces include:

○Tomcat 7.0.59,
https://archive.apache.org/dist/tomcat/tomcat-7/v7.0.59/bin/

■ Used for testing the software environment through
localhost.

○ Esri ArcGIS API for Javascript Version 4.X,
https://developers.arcgis.com/javascript/3/jssamples/

■ Used for 2D visualization.
○ WebGL, latest version found at,
https://www.khronos.org/webgl/

■ Used for rendering advanced inter-converting 3D and 2D
graphics in any compatible web browser without using
plug-ins.

○ WebSockets, latest version found at https://socket.io/
■ Used for transferring data from client to server in real-time

and with low latency.
○ Existing APIs in use in the existing Trek Lite application.

■ Used for transferring data from client to server in real-time
and with low latency.

5.3.8 Hierarchical organization of the source code into its physical
components (files and directories).

● Most of the code is under src/jpl/dijit/
● There is no need to look at the other directories since they are mostly

library files used to create a build.
● Src/jpl/dijit/

○ /css - This is the collection of individual styling sheets for each
module. ○ /images - Any images you want to include locally can
be included here. ○ /templates - These are all the HTML files for
the different modules.
○ /ui - These are more JS files that have to do more with user input
interaction. ○ /events - For events that transcend several modules
their event strings can be found here.
○ /plugins - These are files that are from a third party library but

had to be modified to work with Trek Lite.

15

https://archive.apache.org/dist/tomcat/tomcat-7/v7.0.59/bin/

○ /utils - These are files that don’t exactly create a module but
provide some sort of logic, for example label formatting or
WKT conversions.

● Src/jp/dijit/ControlBar.js - This module contains all the overlay buttons
seen on the Trek Lite interface and their event handlers.

5.3.9 How to build and/or generate the system's deliverables (how to compile,
link, load, etc.)

1. Steps
1.1. Installing Node.js and Npm

1.1.1. Follow the directions in this link
https://www.npmjs.com/get-npm to install. Make sure
that you install the version 14.15.4. Installing the LTS
version of Node will also install npm.

1.1.2. Run the MSI and go through the installation with default
settings. 1.1.3. Test if Node is successfully installed by opening
your terminal (command prompt) and typing “Node”. It should

say something along the lines of
“Welcome to Node.js v14.15.4”. Exit the Node terminal by pressing

CTRL+C twice or by typing “.exit”.
1.1.4. After exiting out of the node terminal, type “npm version”

in the command prompt. It should display all of the npm
packages you have
installed along with their versions.

1.2. Cloning the CVSST repository using Git
1.2.1. Create a new folder in a directory you would like to store

your application and name it “cvsst-test-1.0” .
1.2.2. Using Git Bash, navigate to the directory of your newly

created folder and enter the command (without quotation
marks):

“git clone https://github.com/srivats22/moontrek_frontend.git”.
1.2.3. Using your command prompt, navigate to the directory of
your cloned application and enter the command, “npm install”.

1.2.4. After entering “npm install”, type “npm start”. This will
launch the application on port 4000, which is the
application’s default number.

1.3. Installing Moseif CORS Changer
1.3.1. To use the CVSST application, a Chrome extension called

16

https://github.com/srivats22/moontrek_frontend.git

Moseif CORS changer must be installed. Navigate to the
Chrome Extension Store and

install the Moseif Origin & CORS Changer extension.
1.3.2. Turn on the extension when you are in development.

Warning: Do not visit any sketchy website, as this
extension opens up many security risks such as cross site
requests. Turn off when finished.

1.4. Accessing CVSST
1.4.1. Once the application is launched using “npm start”, you can

test it out on your browser by navigating to
“https://localhost:4000”. Note that it is

“https” not “http”.
1.4.2. Go to “https://localhost:4000/src/” to run it.

5.3.10 Tactics such as abstracting out a generic DatabaseInterface class
● Database structure was not set up. Refer to Section 8 for details.

17

6. Detailed System Design

6.1 User Interface Module

6.1.1 Responsibilities

The User Interface Module serves as the messenger between the user and the Main
Module. It provides a graphical user interface (GUI) for the user and allows the
user to interact with the entire system.

6.1.2 Constraints

Some constraints may include a limitation of space for additional widgets and/or
possible obstruction of views from other elements in the application. There may
also be a very high number of entities which may require additional graphical
processing power.

6.1.3 Composition

The User Interface Module shall be composed of various widget-like components
following the Dojo Toolkit standards. Each User Interface Module shall consist of
simple HTML and CSS elements, all of which can be accessed by their
corresponding lower level modules.

The components are listed below.

1. Chat Component
a. The Chat Component will consist of a main chat box for containing all

chat messages.
b. The Chat Component shall consist of a text input box for sending
messages.

c. The Chat Component shall consist of a single button used to send
messages.

2. Tool Component
a. The Tools Component shall consist of a dropdown bar consisting of all the
collaborative states in the session.
b. The Tools Component shall consist of buttons indicating a variety of
tools: free-hand “ink” drawings, polylines drawings, text, circles, squares,

18

and triangles.
c. The Tools Component shall reveal additional attributes for each button
allowing for additional modifications on the markup. Some attributes

include drawing sizes, font size, color, and width of lines.
3. Import/Exports Component

a. The Import/Exports Component shall consist of an import button and an
export button.

4. States Component
a. The States Component shall consist of all of the markups and entities that
have been placed on the 2D and 3D terrain.

5. Collaborative Sessions Component
a. The Collaborative Sessions Component shall consist of a single button
which reveals a modal.
b. The modal shall have two buttons: joining and creating a collaborative
session.

6.1.4 Uses/Interactions

The user will input data into the system via click events, scroll events, and
key press events.

6.1.5 Resources

This module requires a miniscule amount of memory within the user’s
browser and a sufficient GPU to render additional entities or markups.

6.2 Main Control Module

6.2.1 Responsibilities

The Main Control Module serves as the main component where all of the
Collaborative Visualization for Solar System Trek (CVSST) modules are
instantiated and initialized. It also handles all user input and directs the data
to the correct modules for additional processing.

6.2.2 Constraints

There have been no constraints identified at this time.

19

6.2.3 Composition

The Main Control Module shall consist of functions which initialize
modules 6.3, 6.4, 6.5, 6.6, and 6.7.

6.2.4 Uses/Interactions

The Main Control Module will handle events from the UI. Based on the
commands, it will interact with the Chat Module, Tools Module,
Imports/Exports Module, or States Module.

6.2.5 Resources

This module requires a miniscule amount of memory within the user’s
browser.

6.3 Chat Module

6.3.1 Responsibilities

The Chat Module shall obtain data directly from the user interface and
update the user interface with new data from module 6.7. This module shall
handle all chat events from the UI, update the chat box with data from the
session, and send new data to the session, which will go to the server.

6.3.2 Constraints

The constraints are character limits and number of messages that can exist in
a collaborative session at once. Depending on the amount of data being sent,
network latency and memory usage may increase. A maximum of 500
characters per message shall suffice.

6.3.3 Composition

The Chat Module shall consist of functions which send data to the
collaborative session. It will also contain functions which handle new data
that is sent from the session, functions that update the UI, and functions that
obtain data from the UI.

6.3.4 Uses/Interactions

20

When there is a message being sent via text, the Main Control Module will
handle the event and call functions within the Chat Module which retrieve
user input from the UI. Once the input is validated, the data is sent to
module 6.7 for processing then to module 6.8 for storage into the database.
The WebSocket server will recognize the data, store it in the database, and
send the new entry to all users in the same collaborative session. When the
WebSocket Server Module receives this new entry, the data will be sent back
to the Chat Module to update the UI accordingly.

6.3.5 Resources

This module requires a chat box which will contain all chat messages, an
input text form for user chat messages, and a send button to send the
messages.

6.4 Tools Module

6.4.1 Responsibilities

The Tools Module shall provide collaborative functionality for tools such as
creating markups, drawing on 2D terrain, and creating waypoints. This module
shall receive data from the user via inputting it into the user interface. It shall
update the tools component and send all necessary data to the states module to
carry out the necessary update. The module shall also display which tool is
currently in use.

6.4.2 Constraints

The user will be limited to a certain number of tools that can be used concurrently.
There will be limits to the attributes of the markup data pertaining to the colors,
line types, and size. The data that is input for waypoints will also need to be valid
as well.

6.4.3 Composition

21

This module will consist of components that help to create the various types of
markups. There will also be a set of functions that sends and receives data of the
waypoints.

6.4.4 Uses/Interactions

The user shall select a tool to use with the 2D terrain. Currently, it is only
supported for 2D, but there will be support for 3D terrains in a future version.
Depending on the tool the user selects, they may have to select a location on the
terrain to mark or draw on. The tools module keeps track of the tool selected, as
well as the attributes and location of the markup defined by the user. The module
will send the data of the attributes and location of the markup to the State Module
to be rendered, as well as the Collaborative Session Module to display to other
users.

6.4.5 Resources

This module will require the use of existing SST functions including polyline,
entity placement, and fly to functions. The user’s GPU will be used to render the
markups and drawings.

6.5 Imports/Exports Module

6.5.1 Responsibilities

The Imports/Exports Module will handle all configuration imports and exports for
states. The module shall allow users to export their configurations in formats such
as text format or a properties file to be imported for future use.

6.5.2 Constraints

There may be limits to how much a file can store. Files may also grow very large
in size, which makes exporting and importing the data take a longer length of time.
This may also slow down the system.

22

6.5.3 Composition

The module shall consist of functions that handle the reading and parsing of the
configuration file to import the data. This data may also be passed onto the States
Module to update and show the preset configuration. The module shall also consist
of functions that collect data and write it to the file so that the data can be exported.

6.5.4 Uses/Interactions

The user is able to download and export their data from their current session and
save it into a configuration file. The user may also import previous configurations
from a file into the session and display the previous configurations.

6.5.5 Resources

The module will read data to obtain the configurations using the browser’s
memory.

6.6 State Module

6.6.1 Responsibilities

Users can choose to save their sessions for future references. A user can also go
back to a previous session by choosing a state. For the definition of a state, please
refer to Software requirement documentation.

6.6.2 Constraints

1. Where to save the states
2. The number of states we can save
3. The time it takes to load a previous state
4. How we want to save the state

6.6.3 Composition

N/a

6.6.4 Uses/Interactions

23

The state module is used by the main module. This would make use of our backend
communication to save and retrieve a user’s saved session.

6.6.5 Resources

Utilizes our backend communication module and the memory of the machine to
save the state.

6.6.6 Interface/Exports

Will be updated later once we get more info.

6.7 Collaborative Session Module

6.7.1 Responsibilities

The collaborative session module is the main source of data transfer. It’s
responsible for sending and receiving data from our backend. It also transmitted
the following: Chat Module, Tools Modules, and Import/Export module.

6.7.2 Constraints

Large sessions might take a long time to save and read. Network speed might be
another thing to consider for a smooth experience. Running multiple sessions on
our servers would be another thing to consider. Apart from this, we might also
want to consider saving some sessions in cache memory to ensure faster loading.

6.7.3 Composition

This module will contain methods that can send and receive data to the backend
server module.

6.7.4 Uses/Interactions

When change is made in the current session, data is sent to our backend server and
the new data is passed on to other users in the same session. This will happen in
real-time so there is no delay.

6.7.5 Resources

A backend server is required. Based on a timestamp the UI can get updated. We
also need to ensure multiple data is not sent at once cause this could lead to a crash.

24

25

Section 7 onwards will be completed after more
development is done

7. Detailed Lower level Component Design

7.1 Collaborative Tools Module
Will be filled out as software is developed further

7.2 Chat Module
Will be filled out as software is developed further
8. Database Design

When the back end of the project is developed further on, we may be using JPL’s own database or a cs3
database provided to us by CSULA’s computer science department. After studying last year’s team’s
project and what worked best for them, we understood that it is best for us to use a relational database
design. Using relational SQL may be slower than a NoSQL database, however it will be more efficient
and easy to work with.

26

9. User Interface

9.1 Overview of User Interface
The user would enter the website and be welcomed by the website which would
offer a small tutorial to familiarize the user with the website’s user interface. The
website would present a series of buttons all around the screen that carry out a
function. There would be buttons to show and present small interesting facts
around the moon which also point to specific parts of the moon where the event
was made. In addition, there is the ability to login and create rooms where you can
have a live chat with everyone you invited.

9.2 Screen Frameworks or Images
The screenshots will be added when the front end is finished.

9.3 User Interface Flow Model

provided user input.

27

10. Requirements Validation and Verification

Create a table that lists each of the requirements that were specified in the SRS
document for this software.
For each entry in the table list which of the Component Modules and if appropriate
which UI elements and/or low level components satisfies that requirement.
For each entry describe the method for testing that the requirement has been met.

28

11. Glossary
An ordered list of defined terms and concepts used throughout the document. Provide definitions
for any relevant terms, acronyms, and abbreviations that are necessary to understand the SDD
document. This information may be listed here or in a completely separate document. If the
information is not directly listed in this section provide a note that specifies where the
information can be found.

29

12. References

<List any other documents or Web addresses to which this SDD refers. These may include other
SDD or SRS documents, user interface style guides, contracts, standards, system requirements
specifications, use case documents, or a vision and scope document. Provide enough information
so that the reader could access a copy of each reference, including title, author, version number,
date, and source or location.>

Brad Appleton <brad@bradapp.net> http://www.bradapp.net

https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

30

http://www.bradapp.net
https://www.cs.purdue.edu/homes/cs307/ExampleDocs/DesignTemplate_Fall08.doc

