
Software Design
Document (SDD)

for

Sidewalk Slope Assessment System

Version 2

Prepared by:
Aquil Alam, Alejandro Chanocua, Omar Eclicerio, Ernesto Garcia, Francisco
Gastelum, Henry Gonzales, Gui He, Perla Ramirez, Rishi Shah, Daniel Zeng

Department of Public Works and Bureau of Engineering, LA City

CSULA Senior Design 2021-2022 / LA City Bureau of Engineering

Table of Contents
1.0 Introduction 5

1.1 Purpose 5
1.2 Document Conventions 5
1.3 Intended Audience and Reading Suggestions 5
1.4 System Overview 5

2.0 Design Considerations 7
2.1 Assumptions and Dependencies 7
2.2 General Constraints 8
2.3 Goals and Guidelines 9
2.4 Development Methods 10

3.0Architectural Strategies 12
3.1 Task 1 12
3.2 Task 4 13

4.0 System Architecture 14
4.1 Task 1 14
4.2 Task 2 15

4.2.1 Rover UI 15
4.3 Task 4 16

4.3.1 Database Data Diagram 16
4.3.2 Sidewalk Table 17
4.3.3 Rover data table 20
4.3.4 Rover sidewalk 22
4.3.5 Sidewalk GoPro Metadata 24
4.3.6 Sidewalk Rover Data View 26

5.0 Policies and Tactics 30
5.1 Choice of which specific products used 30
5.2 Plans for ensuring requirements traceability 31
5.3 Plans for testing the software 31

6.0 Detailed System Design 32
6.1 Raspberry Pi 3 32

6.1.1 Responsibilities 32
6.1.2 Constraints 32
6.1.3 Composition 32
6.1.4 Resources 32
6.1.5 Interface/Exports 32

6.2 Rover User Interface 32
6.2.1 Responsibilities 32
6.2.2 Constraints 32
6.2.3 Composition 32
6.2.4 Uses/Interactions 32
6.2.5 Resources 32

6.3 NavigateLA 33

6.3.1 Responsibilities 33
6.3.2 Constraints 33
6.3.3 Composition 33
6.3.4 Uses/Interactions 33
6.3.5 Resources 33
6.3.6 Interface/Exports 33

6.4 Web application and mapping files 33
6.4.1 Responsibilities 33
6.4.2 Constraints 33
6.4.3 Composition 34
6.4.4 Uses/Interactions 34
6.4.5 Resources 34
6.4.6 Interface/Exports 34

7.0 Rover UI Design 35
7.1 Rover UI Input Field and Buttons 35
7.2 Rover UI JoyStick 35

8.0 Database Design 36
8.1 Relational Schema 36
8.2 Diagram Description 36
8.3 Azure blob Storage implementation 36
8.4 Data Collection 37
8.5 Future Implementation 37

9.0 User Interface 38
9.1 Overview of User Interface 38

9.1.1 Task 1, Web Application 38
9.2 Screen Frameworks or Images 38

9.2.1 Task 1, Web Application 38
9.2.2 Task 3, Rover UI 42

9.3 User Interface Flow Model 43
9.3.1 Task 1, Web Application 43

10.0 Requirements Validation and Verification 44
11.0 Glossary 45
12.0 References 45

Revision History

Name Date Reason For Changes Version

Aquil Alam 5/10/2022 Spring 2022 Draft Prepare 2

Perla Ramirez 5/11/2022 Added descriptions to sections 1 and 2 2

Perla Ramirez,
Ernesto Garcia
Alejandro
Chanocua,
Aquil
Alam

5/11/2022 Fixed formatting for headers, changed table of
contents for automatic updates. Updated descriptions,
contents/explanations for Sections contributed by each
person, details on project elaborated.

2

Daniel Zeng,
Omar
Eclicerio

5/11/2022 Modified sections 2.3,2.4, 4, 5.1, 6.3, and updated
the table of contents. Content updated.

2

Francisco
Gastelum, Gui He,
Rishi Shah

5/11/2022 Modified sections 2, 3, 4, 5, 6 from a task 1 perspective. 2

Henry Gonzales 5/11/2022 Updated task 1 for each section 2

1.0 Introduction
1.1 Purpose

The Sidewalk Slope Monitoring System project is an effort to develop the necessary databases,
user interfaces, and automation scripts to aid the City of Los Angeles, Bureau of Engineering
(BOE) in maintaining over 11,000 miles of sidewalk. Based on their prioritization and scoring
system, BOE can assign a numerical score to each sidewalk segment to determine which segments
require immediate attention or repair for their Sidewalk Repair Program.

The system developed by our team is designed to help BOE in their data collection by building a
robot user interface to control the robot BOE uses during their field analysis, image processing
scripts to extract image information, a web application to display and map image data, and a
database to hold the data collected and extracted by the system.

This document will outline the design of the system explained above. See System Overview for an
exact breakdown of the system into tasks.

1.2 Document Conventions

This Software Design Document (SDD) uses a standard documentation template provided by the
California State University, Los Angeles Computer Science department.

1.3 Intended Audience and Reading Suggestions

This document is intended to aid the team members listed on the first page in scoping and
developing their initial software design requirements that will later be refined in the Software
Requirements Specification (SRS) document. This document is intended to break down BOE’s
initial project requirements into tasks to aid the team in planning work. The entire document
should be read by the team. Although team members are ultimately held responsible for their
specific tasks, team members should be aware of the entire team’s efforts.

This document is intended to provide BOE and the project advisor with an overview of the
expected work to be completed by the team. Sections 2, 6, and 10 should be read by BOE and
the project advisor.

This document is intended to provide a high-level overview of design planning and concepts for
Computer Science students involved in future years’ efforts. Sections 2, 3, 4, 6, 9, and 10 should be
read by Computer Science students who will continue this project beyond Spring 2022.

1.4 System Overview

BOE requires sidewalk data to evaluate sidewalk segments for their Sidewalk Repair Program.
Because there are over 11,000 miles of sidewalks, it is valuable to BOE to leverage a process that
minimizes overhead by automating image and data processing.

To collect the necessary data to assign scores, BOE plans to utilize a Leo Rover robot, with a

GoPro camera mounted on it, to collect images of sidewalk segments in the city of Los Angeles.
The system as a whole is broken down into four major components or tasks. The process for BOE
to use our system is as follows:

1. The robot will be accompanied by a field worker that will control it using a user
interface developed by the team. The user interface is hereby referenced to as Task 3.

2. Scripts will be produced in an effort to parse Exchangeable Image File (EXIF) data from
the GoPro images collected. Image processing scripts will be applied to the images to
extract additional data necessary for BOE’s prioritization and scoring system. The image
processing scripts will hereby be referenced as Task 2 and begin in the Spring 2022
semester.

3. A web application will display the collected images with its related EXIF and image
processing data according to latitude and longitude. In addition, Task 1 will develop scripts
to create mapping files that can be hosted on BOE’s mapping application, NavigateLA. The
web application and the mapping files will hereby be referenced as Task 1.

4. A database developed by the team will contain tables for the processed GoPro EXIF
data, rover data, and GeoJSON ready shapes based on collected sidewalk data. The
database is hereby referenced as Task 4.

2.0 Design Considerations
2.1 Assumptions and Dependencies

● Rover expectations

o Cracks and holes on sidewalks shall be minimal.
o Battery 4 hrs of nominal driving or 8 hrs of video streaming.
o Hardware is reliable.
o Users will protect hardware from damage.
o System is waterproof.
o Operator will clear the sidewalk before measurement.

● Task 1
o Web application

▪ Web application will be used to view specific or individual sidewalk
segment images and slope data.

▪ Web application will be used to visually review sidewalk segments.
▪ Web application will be used to visualize and package collected Rover

data for NavigateLA.

o Mapping files
▪ Mapping files will be viewed by the user by importing them to

NavigateLA, if and only if, mapping files are not hosted on NavigateLA.
▪ Mapping files will contain data for many sidewalk segments.
▪ Mapping files will be viewed by the user by selecting a layer loaded on

NavigateLA, if and only if, mapping files are kept on a database managed
by BOE.

▪ Mapping files will contain its damage categorization based on the Severity
Index from the Damage Severity Matrix, provided by the BOE report.

▪ Mapping files will contain all other information that is important for the BOE
to view on NavigateLA.

● Task 2
o System will be used during the day to take optimal photos.
o Sidewalk will always be captured as the center of the image
o Rendered images requires user-input before processing measurements

● Task 4
o Rover

▪ User will use GoPro provided app to render 360 Degree Images
▪ User will keep an eye on the rover at all times.
▪ User will manually extract data from rover's memory cards

▪ User will manually control the Rover using the Rover UI.

o Web API
▪ User requests data through URL or http requests.
▪ Users will only upload unmodified CSV files to the CSV upload route.
▪ User requests database queries in JSON or JSON encoded URI format.

o Database
▪ Users will manually input data into the database or through API endpoints.
▪ User specifies either a sidewalk or section identifier for every rover scan.

2.2 General Constraints

● Task 1
o Web application

▪ Web application uses a local instance for development and testing
purposes.

▪ Web application must have access to the database containing
sidewalk data.

▪ Web application must use database when displaying sidewalk data
and cannot store or use data locally.

▪ Web application must use Azure Storage Blob to access GoPro images.
▪ Web application must use a BOE web server for production.
▪ Web application must be accessible to BOE, either using Internet or

Intranet access.
▪ Web application must be accessible to BOE regardless of their

preferred browser and screen size.
▪ BOE must provision a web server for web application production use.
▪ BOE must maintain the web server hosting the web application.
▪ Web application backend will be done using React.
▪ Web application frontend will be done using HTML/CSS and Bootstrap.

o Mapping files
▪ Mapping files must be generated by scripts using a 3rd party application like

ArcGIS.
▪ Mapping files must be in either: CSV, DXF, DWG, DGN, KML, geoJSON, or

shapefile formats in order to be imported on NavigateLA.
▪ Mapping files must be importable in NavigateLA, if and only if,

mapping files will not be hosted on a database managed by BOE.
▪ Mapping files must maintain all design features, such as color

schemes, annotations, polygons, lines, shapes, when hosted in
NavigateLA.

▪ Mapping files must be hosted on NavigateLA when a substantial amount
of mapping files is available for viewing.

▪ A request for a database to host the mapping files can only be placed
after discussing and receiving approval from the advisor and BOE.

● Task 3

○ Database
■ Access to BOE Sidewalk database must be granted by BOE
■ IP address (assigned by ISP) must be manually approved to access

database

○ Web API Server
■ Web host is required for deployment.
■ Operating system required.
■ NodeJS installation required.
■ IP of API server must be approved by BOE to access database
■ Manual handling of the .env file containing credentials is needed for API

to connect to the database.
■ Ports on the deployment server must be opened in accordance with the

port selected in the API code.
■ Python installation is required to use CSV upload features from API.
■ Temporarily created directories storing CSV files are to be deleted after a

set period to prevent unnecessary storage waste.

2.3 Goals and Guidelines

● Task 1
o Web application

o Web application will be hosted on a web server when the frontend and
major components of the backend are complete.

o Web application’s web server will be discussed with BOE to determine
what languages and web server applications are available to us.

o Mapping files
o Mapping files will be hosted on NavigateLA after receiving approval

from advisor and BOE to request the database. Database will host files
that NavigateLA will reference. Users can select the files as a layer on
NavigateLA.

o Mapping files will be available for users to import to NavigateLA if a
database is not available or if only a limited section of the city is mapped by
the mapping files.

o Mapping files will be packaged by the Date the Field test was conducted
with the Rover.

o Mapping files will contain sidewalk damage categorization based on the
percent cross slope from the digital level.

● Task 2
o Rover

o Build Leo Rover
o Implement last year's project onto the Leo Rover.
o Implement this year's tasks on the Leo Rover

● Task 3
o Database

o Design a database schema which will include all aspects of the project.
Including but not limited to: rover, UI’s, and NavLA.

o For data that has been preprocessed before insertion, a copy of the
unprocessed data should be stored. This makes it possible when changes
to preprocessing methods are needed or corrections are made.

o Collected data should have an association to larger entities such as
SectionID or SidewalkID.

o Implement Azure tools to help with data manipulation.

2.4 Development Methods

Components to build a slope monitoring system have been divided into four applicable tasks for
early stages of the system. Development methods are yet to be discussed.

● Task 1
o Web application

▪ Use prior knowledge from web development courses and projects to
build the frontend and backend of the site.

▪ Refer to ReactJS documentation for best practices and setting up an
environment.

▪ Refer to the Google Maps React API documentation for setting up an
interactive map on the web application.

o Mapping files
▪ Understanding ArcGIS and developing methods to map rover data and apply

color coding based on Severity Index.
▪ Reference ArcGIS forums to explore other user’s methods and

processes when developing scripts using ArcGIS.

● Task 2

o Rover User Interface allows field users to control the rover and collect sidewalk
data.

● Task 3
o Database

• Microsoft SQL Server Management Studio 18 software is used to create, edit, delete,
and visualize tables.

• Output files from rover and GoPro are used as guidelines for design and
implementation of tables.

• All text based collected and generated data are designated to be stored in their
respective tables.

o API Server

• A DigitalOcean droplet is used to host the web server containing the API.
DigitalOcean was considered due to the free student credits, ease of setting up, and
availability of Ubuntu. The choice of web host is independent of the API code, but a
migration to a Microsoft based web host is recommended for consistency with other
data sources of the client.

• Ubuntu is the operating system used for the web server. Ubuntu was chosen as the
most financially feasible for development and JavaScript is OS agnostic.

• NodeJS was chosen in place of Python to run the code to remain consistent with the
front end team’s usage of JavaScript.

• ExpressJS library is used as the back end web application framework to develop the
API. ExpressJS is widely supported and is known to be the de facto framework for
back end development with NodeJS.

• MS-SQL library is used to connect and send commands to the Microsoft SQL
database from the API server. MS-SQL provides all the necessary functionality
needed and compliance for the API and is supported by Microsoft.

• API follows standard REST design philosophies in its implementation. REST is
commonly used and serves as a solid guideline for further development of API
features.

• CSV uploads to the API server is initially handled by the designated API endpoint
and then a child process is spawned to run a Python script to process write to the
server.

3.0 Architectural Strategies

3.1 Task 1

● Web application

o Used React to combine HTML, CSS, Bootstrap for the frontend and Node.js
for the backend. Javascript was used for both the frontend and backend.

▪ Enables team to utilize each other’s scripts and combine efforts without
being concerned with language compatibility.

▪ React uses templates that make it easier in developing the backend.
▪ React testing environments can easily be created and can easily be

replicated following the ReactJS documentation.
▪ ReactJS and Node.js have an extensive set of documentation that we have

heavily depended on to ensure our product is created with best practices.
o Python used to create scripts to parse EXIF data from GoPro images
o React was used to create scripts that extract database data and to extract images

from Azure Storage Blob.
o Google Maps React API was used to create an interactive map
o GoPro Fusion Studio was used to manually convert all dual fisheye images into

equirectangular images with 360 capabilities.

● Mapping files

o Rover data was loaded onto CSV since NavigateLA web map supports
that format.

o React-csv library used for saving CSV files from the web application’s
NavigateLA page.

o Other mapping applications such as ArcGIS are available and their file types
are supported by NavigateLA.

▪ ArcGIS is also available to students for free from the university, but is only
accessible via Parallels Client, a remote desktop application that allows
users to access campus servers containing the application. Because we are
remotely accessing the server from our personal machines, performance is
limited and requires an internet connection.

▪ ArcGIS is also used by BOE.
o Once many mapping files are created to cover a large portion of the city of

Los Angeles, the mapping files can be hosted on NavigateLA. This is the next
step of the project for FALL2022.

▪ Users would be able to select our layers on NavigateLA.

▪ Otherwise, users would need to import the mapping files and apply color
schemes. When imported to NavigateLA, color schemes are not maintained.
Any colors or annotations applied to the mapping file are forgotten.

▪ However, in order for the layer to be hosted on NavigateLA, large amounts of
sidewalk data and fully functioning automation scripts are required.

3.2 Task 3

● Database

○ Collected raw data and processed data are both inserted into the database either in
the same table or tables that are associated. This allows adjustments and corrections
to the data, should data process methods change.

○ All collected data entries from rover and GoPro have associations with larger entities
such as sidewalks or street sections to allow easier grouping of data. Using section
identifiers is preferred as they are less likely to be changed as opposed to sidewalks.

● Web API Server

○ NodeJS allows the deployment of the API server on any platform and requires
minimal setup to get running. NodeJS has long term support, wide adoption, and
performance features to allow scaling of the applications to millions of requests
provided the web provider is sufficient. The OS agnostic attribute of NodeJS
provides wide options for migrations from server to server or multiple deployments.

○ ExpressJS library offers all the necessary features to implement a REST API. This
allows CRUD features to be implemented without complexity and middleware can
be applied to adjust server needs.

○ All routes are modular by design to promote separation of concerns. Each route
handler function contains at most two parameters, one is the database client and the
other contains URI parameters and request body if the request type is POST. This
implementation allows each route module to execute commands to the database and
de-couples from other routes for easier debugging and maintenance.

○ Database query route uses JSON object or JSON object encoded to URI to generate
SQL statements. The JSON structure allows for customization of queries to the
database without directly writing SQL. This reduces the risk of exposing the ability
of writing SQL statements directly and offers many of the organization and filtering
features of SQL statements. The interchangeability of using either JSON or URI
allows for data requests to be completed through either a browser or http request.

○ CSV file handling is processed using Python scripts that are executed through a child
process spawn from NodeJS. Although this adds complexity of two languages, the
main focus of the Python side is on processing data from files and writing to the
appropriate tables on the database. CSV processing is far more intuitive with pandas
library than offerings available on the JavaScript side and is easier to adapt to
changing data inputs in Python. The API’s focus is primarily on accessibility of data
and less on the processing of data.

4.0 System Architecture
The main functionalities of the system are divided into four tasks, then brought together at the end.
The four tasks; create a web application for rover data, create a user interface for rover controls,
and create a backend database.

4.1 Task 1

■ Web Application

o The web application will display a GoPro image and all of its related data on the
console. This includes GPS data, slope data, and other data. Users can switch back
and forth between images using “previous” and “next” buttons.

o The web application is intended to show one instance of a sidewalk segment at
a time. It will not provide an overview of the entire city of Los Angeles.

o Data shown on the web console is obtained from the Azure storage and SQL
Server database. The console contains data from the image processing and
database teams.

o The web application’s NavigateLA page will show all of the Rover’s collected data
from the database. It can be downloaded as a csv file allowing for its packing for
NavigateLA map visualization.

■ Mapping files

o Mapping files will pull data from the Azure database. It will map the
GPS coordinates and the sidewalk to a CSV file using react-csv.

o Mapping files can also be created with a shapefile from ArcGIS which can then either
be imported or hosted on NavigateLA.

o Depending on how much sidewalk data is collected mapping files can span from
just 1 sidewalk segment to all sidewalk segments across Los Angeles

4.2 Task 2

4.2.1 Rover UI

Rover UI

This Rover UI allows manual control of the Leo Rover. Input field for the Sidewalk ID
corresponds to the sidewalk segment to start collecting data. Data is stored on the SD card
on the rover to be post processed.

Rover UI Navbar

4.3 Task 3

4.3.1 Database Data Diagram

4.3.2 Sidewalk Table
This dataset contains an inventory of City of Los Angeles Sidewalks and was digitized
using a combination of G.I.S software, aerial imagery (2014 LARIAC), and geographic
dataset of property/right-of way lines. Dataset is not actively being maintained. Last
updated: 2/23/2021

Table Name - sdwk.sidewalk_wm

Column name Type Descriptive
name

Allow Nulls Description

OBJECTID INT Object Field
Asset Identifier

NO A unique
feature
identifier
populated by
Los Angeles
City Staff for
internal use.

SIDEWALK_ID INT Sidewalk
Identifier

NO A unique
feature
identifier
populated by
Los Angeles
City staff for
internal use.

ASSETID INT Asset Identifier NO A unique
feature
identifier
populated by
Los Angeles
City staff for
internal use.

FEATURETYPE NVARCHAR
(16)

Feature Type NO Describes the
type of feature
class(sidewalk/r
amp/driveway/e
tc) the data
belongs to.

PIND NVARCHAR
(14)

Parcel
Identification
Number

NO A unique
Parcel
Identification
Number (PIN)
for all parcels

within the City
of L.A. All
Sidewalk
related features
will be split,
non-overlappin
g, and have one
associated PIN.

CALC_WIDTH FLOAT Calculated
Width

NO A generalized
width of the
feature
calculated using
spatial and
mathematical
algorithms on
the feature.
Widths are
rounded to the
nearest whole
number. In
cases where
there is no
value for the
width, the
applied
algorithms were
unable to
calculate a
reliable value.

CALC_LENGTH FLOAT Calculated
Length

NO A generalized
length of the
feature
calculated using
spatial and
mathematical
algorithms on
the feature.
Lengths are
rounded to the
nearest whole
number. In
cases where
there is no

value for the
length, the
applied
algorithms were
unable to
calculate a
reliable value.

CALC_MIN_W
I DTH

FLOAT Calculated
Minimum
Width

NO In almost all
cases where
features have
variable widths,
the minimum
width is used.

CALC_MIN_L
E NGTH

FLOAT Calculated
Minimum
Length

NO In almost all
cases where
features have
variable widths,
the minimum
length is used.

NOTES NVARCHAR
(255)

Notes YES Short notes
created by

CRTN_DT DATETIME
(7)

Creation Date NO Indicates date
feature was
created

USER_ID NVARCHAR
(20)

User Identifier NO Name of field
agent
responsible for
feature input

LST_MODF_DT DATETIME
(7)

Last Modified
Date

NO Indicates date
feature was
revised/edited

SHAPE GEOMETRY Shape NO A polygon that
represents
paved
pedestrian
walkways. The
polygon is
constructed by

several GPS
(Latitude,
Longitude)
coordinates.
The first
coordinate of
the polygon will
also always be
the last
coordinate.

4.3.3 Rover data table
The rover data table was created to store data extracted from rover output files. The table
contains GPS coordinates, slope measurements, and information of the file the data
originated from. All coordinates and geometry data are in Web Mercator(SR3857) format
and can be used to locate a position on any map system using SR3857.

Table Name - sdwk.rover_data

Column name Type Descriptive
name

Allow Nulls Description

ID INT Identifier NO Incremental
number used for
indexing.

INPUT_SW_ID INT Input Sidewalk
Identifier

NO Numeric
identifier
assigned by
field agent.
Identifiers
should be
referenced from
the sidewalk
table.

RAW_GPS NVARCHAR(1
00)

Raw GPS Text NO Text string
extracted
directly from
rover output csv
file.

LATITUDE FLOAT Latitude NO Latitude
coordinates
extracted from

GPS values in
SR:3857
format.

LONGITUDE FLOAT Longitude NO Longitude
coordinates
extracted from
GPS values in
SR:3857
format.

DATE DATE Date NO Date indicating
the recording of
GPS data

SLOPE_X FLOAT Slope X NO X slope value
extracted from
rover data
recording.

SLOPE_Y FLOAT Slope Y NO Y slope value
extracted from
rover data
recording.

SHAPE GEOMETRY Shape NO Spatial point
geometry
created from
latitude and
longitude
referencing
GPS position
rover data was
recorded.

RECORD_FIL
E

NVARCHAR(1
00)

Recorded File
Name

NO File name of
.csv file
recorded data
was extracted
from.

SRID INT Spatial
Reference
Identifier

NO Spatial
reference
identifier
denoting the
format GPS

coordinates are
in.

TIME TIME Time NO Time
indicating the
recording of
GPS data

PERCENT_X FLOAT Percent Slope X YES X slope value
in percentage

PERCENT_Y FLOAT Percent Slope Y YES Y slope value
in percentage

4.3.4 Rover sidewalk
The rover sidewalk was created to store spatial geometry generated per output file from the
rover. Every GPS coordinate collected from the output file is used to create a polygon
(SHAPE) that can be used to generate an outline of the portion of sidewalk traversed by the
rover. The default spatial reference id is 3857 and all relative coordinate data is formatted
in that manner.

Table Name - sdwk.rover_sw

Column name Type Descriptive
name

Allow Nulls Description

ID INT Identifier NO Auto
incrementing
number used for
indexing.

INPUT_SW_ID INT Input Sidewalk
Identifier

NO Numeric
identifier
assigned by
field agent.
Identifiers
should be
referenced from
the sidewalk
table.

SHAPE GEOMETRY Shape NO A polygon that
represents the
sidewalk
positions the
rover traversed.
The polygon is
constructed by
several GPS
(Latitude,
Longitude)
coordinates.
The first
coordinate of
the polygon will
also always be
the last
coordinate.

RECORD_FILE NVARCHAR(1
00)

Recorded File
Name

NO File name of
.csv file
recorded data
was extracted
from.

SRID INT Spatial
Reference
Identifier

NO Spatial
reference
identifier
denoting the
format GPS
coordinates are
in.

4.3.5 Sidewalk GoPro Metadata
The Sidewalk GoPro Metadata table was created to store metadata extracted from GoPro
images. The GPS coordinates from the metadata is useful to associate the image taken to a
position on the map. The IMAGE_NAME can also be used to locate the image file from the
Azure Blob store. The ROVER_SW_ID references the INPUT_SW_ID from the
sdwk.rover_sw table. To find the sidewalk id associated with the image, a geometric point is
created from the latitude and longitude of the metadata to find the nearest geometry from
the sdwk.rover_sw table to that point and assign the associating INPUT_SW_ID.

Table Name - sdwk.gp_meta

Column name Type Descriptive
name

Allow Nulls Description

ID INT Identifier NO Auto
incrementing
number used for
indexing.

IMAGE_NAM
E

NVARCHAR(5
0)

Image File
Name

NO Image file name
where metadata
was extracted
from. This is
used to locate
the image from
the Azure blob
store.

DATETIME SMALLDATE
IME

Date time NO Date and time of
image recording.

LATITUDE FLOAT Latitude NO Latitude
position for
where the
image was
taken.
Coordinates are
in SR:3857
format.

LONGITUDE FLOAT Longitude NO Longitude
position for
where the
image was
taken.
Coordinates are
in SR:3857
format.

SHAPE GEOMETRY Shape NO Spatial
point
geometry
created
from
latitude
and
longitude
referencing
GPS
position
GoPro data
was
recorded.

ROVER_SW_I
D

INT Rover Sidewalk
Identifier

YES The sidewalk id
the image was
estimated to be
recorded at. A
geometric point
is created from
the longitude
and latitude
values and used
to find the
closest rings to
that point and
the sidewalk id
is taken from
the row
containing the
rings.

SRID INT Spatial
Reference
Identifier

NO Spatial
reference
identifier
denoting the
format of GPS
coordinates

SW_ID INT Sidewalk
ID

YES Corresponding
closest
Sidewalk ID to
the image GPS
coordinate

4.3.6 Sidewalk Rover Data View
The Sidewalk Rover View was created to organize collected rover data due to clustering of
GPS coordinates. The contained aggregate data is useful in determining the sidewalk quality
at a given location. The grouping by unique coordinate is used to organize all of the rover
slope data.

View Name - sdwk.rover_view

Column name Type Descriptive
name

Allow Nulls Description

INPUT_SW_ID INT Input Sidewalk
Identifier

NO Numeric
identifier
assigned by field
agent. Identifiers
should be

referenced from
the sidewalk
table.

LATITUDE FLOAT Latitude NO Latitude
coordinates
extracted from
GPS values in
SR:3857
format.

LONGITUDE FLOAT Longitude NO Longitude
coordinates
extracted from
GPS values in
SR:3857
format.

DATE DATE Date NO Date indicating
the recording of
GPS data

TIME TIME Time NO Time indicating
the recording of
GPS data

AVERAGE
SLOPE X

FLOAT Average Slope X NO Average Slope
X value for a
GPS coordinate

MIN SLOPE X FLOAT Min Slope X NO Min Slope X
value for a GPS
coordinate

MAX SLOPE X FLOAT Max Slope X NO Max Slope X
value for a GPS
coordinate

MEDIAN
SLOPE X

FLOAT Median Slope X NO Median Slope
X value for a
GPS coordinate

AVERAGE
SLOPE Y

FLOAT Average Slope Y NO Average Slope
Y value for a
GPS coordinate

MIN SLOPE Y FLOAT Min Slope Y NO Min Slope Y
value for a GPS
coordinate

MAX SLOPE Y FLOAT Max Slope Y NO Max Slope Y
value for a GPS
coordinate

MEDIAN
SLOPE Y

FLOAT Median Slope Y NO Median Slope
Y value for a
GPS coordinate

AVERAGE
PERCENT X

FLOAT Average Percent
X

NO Average
Percent X value
for a GPS
coordinate

MIN PERCENT
X

FLOAT Min Percent X NO Min Percent X
value for a GPS
coordinate

MAX
PERCENT X

FLOAT Max Percent X NO Max Percent X
value for a GPS
coordinate

MEDIAN
PERCENT X

FLOAT Median Percent
X

NO Median Percent
X value for a
GPS coordinate

AVERAGE
PERCENT Y

FLOAT Average Percent
Y

NO Average
Percent Y value
for a GPS
coordinate

MIN PERCENT
Y

FLOAT Min Percent Y NO Min Percent Y
value for a GPS
coordinate

MAX
PERCENT Y

FLOAT Max Percent Y NO Max Percent Y
value for a GPS
coordinate

MEDIAN
PERCENT Y

FLOAT Median Percent
Y

NO Median Percent
Y value for a
GPS coordinate

Task 3

Web API Server

● Starting the server only needs NodeJS to run the main index file of the code directory.
Errors thrown will cause the server to terminate and it is advised to use utility tools to
restart the server automatically when errors are encountered.

● When an endpoint is sent a request, the route handling within the primary index file
delegates all actions to the proper module designated for the route. The route handler
is responsible for providing the module the proper data needed by the modules and
the instance of the database client.

● The database client within the API server is only instantiated once in the main index
file and passed as an argument to modules from the route handlers. The database
client configuration must be set up prior to its instantiation.

● The primary endpoint for data requests operates in three stages. The first is the
processing of the query parameters from the request body. All query parameters are
received as strings regardless of the intention of the requester and the processing step
is to parse all numeric strings to numbers. The second stage constructs a SQL
statement from the JSON object using specified keys, operator keys list, and arrays or
nested objects. The final result from stage 2 is a SQL statement where in the final
stage it is executed on the database through the database client and the results are
returned back through the response handler.

● The endpoint for finding the closest sidewalk for a given coordinate utilizes only two
parameters, one contains a pair of coordinates and the other the SRID of the
coordinate. The SRID is used to determine whether the coordinate requires
conversion to SRID 3857, which is the spatial reference system used by the sidewalk
table. The coordinates are composed in a SQL statement that searches for the
SIDEWALK_ID closest to the given coordinate. Depending on the server load, this
process can take around 5-7 seconds per coordinate.

● The coordinate conversion endpoint does not require the database client and although
it is normally a read only type request, the endpoint itself is a POST type request. Due
to the character limits of URL/URI and a list of coordinates can number largely, the
request type must be a POST type to allow the use of the request body. The route
simply passes the request body, an array of coordinates, and the designated module
will iterate each pair of coordinates and convert them appropriately specified by the
URI query parameters.

● The CSV upload route is the only route that spawns child processes. The route
handler extracts the target table and origin source(rover or GoPro), and assigns the
proper Python script to process and upload the CSV file. The CSV files are received
through the request body, parsed into CSV from the request body, written to a
temporary directory, where it can be read by the Python script and deleted once
processed and inserted into the database. All file and data processing is handled
through Python. The route also ensures unprocessed files within the temporarily
created directories are to be removed after a set time period to prevent unnecessary
storage waste.

5.0 Policies and Tactics

5.1 Choice of which specific products used

● Task 1

o Web application
▪ React

● React uses Node.js for its backend and HTML in the form of JSX.
▪ HTML, CSS, and Bootstrap
▪ Google Map Javascript API
▪ GoPro Fusion Studio
▪ Python

● Manually extracts all GoPro image metadata

o Mapping files
▪ React-csv library

● This library was chosen for its features that make reading, formatting,
and writing data into a CSV straight forward. React-csv also lets the
browser handle where downloads will go.

▪ ArcGIS will need to be used for FALL 2022 color coding.
● Program available to automate mapping file creation. Forums

and documentation thoroughly explains how the application may
be used and provides sample use cases.

● Utilizes Python code for its command prompt which will handle
automation

● Task 2
o Rover UI

▪ HTML
● Used as the standardized system for tagging text files to achieve font,

color, graphic, and page structure.
▪ JavaScript

● Object oriented programming language used to create interactive
effects within the Rover UI.

▪ CSS
● Style sheet language used for describing the presentation of the Rover

UI.
▪ roslibJS

● Core Javascript library for interaction with ROS from the browser.
▪ Leo Rover was chosen as a replacement for our previous rover “Robecca''

because it's more versatile, price friendly, and is a good platform to base a
fleet of rovers on.

▪ GoPro Fusion was chosen as our camera because it offers a 360-degree
view of the rovers surrounding with only one product.

● Task 3
o Database

▪ Azure SQL database was chosen by our corresponding liaisons because it’s
what they are currently using themselves.

▪ Azure Blob storage was chosen as a solution for image storage because it
integrates to Azure DB nicely and it’s the most cost-effective method
available to the BOE

5.2 Plans for ensuring requirements traceability

● Task 1

○ Web application

▪ Backend is actively extracting data from the Azure storage and SQL Server
database. It is not storing or using local data.

o Mapping files

▪ Automation scripts create shapefiles that meet the design requirements. Design
requirements include color schemes based on BOE’s prioritization and scoring
system, annotations for slope, etc

5.3 Plans for testing the software

● Task 1
o Web application

▪ Users can view an image. The administrators can confirm that the
image that is shown and its corresponding data are related.

▪ Users can click on a map coordinate and the data will change accordingly.
▪ React local server will be created for testing purposes

o Mapping files
▪ When running the web application we developed, it pulls data from the Azure

database and creates a CSV file.
▪ The shapefiles must display the shape of a sidewalk with annotations and any

needed color schemes which is to be developed in FALL 2022. (applying
color schemes based on BOE’s prioritization and scoring system which is
outlined in the BOE report under Damage Severity Matrix).

● Quality Control

6.0 Detail System Design
6.1 Raspberry Pi 3

6.1.1 Responsibilities
The role of this module will be to compute and store data captured by the rover modules
such as Camera and Accelerometer.

6.1.2 Constraints
Possible constraint of this module would be the memory size of the MicroSd Card attached
to the rover.

6.1.3 Composition
A description of the use and meaning of the subcomponents that are a part of this component.
Uses/Interactions
User interaction to power the Raspberry Pi 3

6.1.4 Resources
This is the main module that will power the accelerometer and camera.
They are dependent on Raspberry Pi 3

6.1.5 Interface/Exports
CSV file will export data from the MicroSd card into the database.
Interface Linux.

6.2 Rover User Interface

6.2.1 Responsibilities
The primary responsibility of the rover interface is to allow the user to access, move, and to
automate data collection using the rover.

6.2.2 Constraints
Constraints of this component would be based on the sidewalk condition, any debris would
give inaccurate results.

6.2.3 Composition
Extra camera added on the rover is a GoPro. It is responsible for capturing photos of the
sidewalk where data was recorded.

6.2.4 Uses/Interactions
The rover user interface will be used to control the rover movements and ability to collect
data. The rover user interface will interact with the Bureau Of Engineering field workers.

6.2.5 Resources
Rover UI

6.3 NavigateLA

6.3.1 Responsibilities
From the images taken from the GoPro camera attached to the Rover. The functionalities
include measuring the XY (vertical and horizontal) displacements on the sidewalk and
eventually categorizing the images according to their condition.

6.3.2 Constraints
Measuring the vertical displacement is close to impossible. The angle of the images
being taken from the camera doesn’t show the distance from an overhead view.

6.3.3 Composition
We use a Python library that is compatible with processing functionality. We currently
use Pycharm IDE to utilize those components.

6.3.4 Uses/Interactions
NavLA web segment implemented will generate the sidewalk data packaging dates, when
the measurements were made, categorizing into dates.

6.3.5 Resources
Beginning stages don’t require any resources other than the images used to learn and test
with algorithms.

6.3.6 Interface/Exports
Used Python library built in for analyzing collected data.

6.4 Web application and mapping files

6.4.1 Responsibilities
The web application is an interface for users to view a collection of rover data. The mapping
files script will create CSV files automatically that can either be imported or hosted on
NavigateLA.

6.4.2 Constraints
Web applications will be developed in a test environment locally. If the liaison provides a
web server, the web application will be moved to a production environment. The mapping
files will be imported to NavigateLA. If many mapping files are created using sidewalk
data, the mapping files can be hosted on NavigateLA. This depends on the amount of
sidewalk data collected, GoPro images available, and a database to host the mapping
files.

6.4.3 Composition
The web application is the web console that users interact with. The mapping files are
automation scripts that will create a CSV file for visualization

6.4.4 Uses/Interactions
The web application and the mapping files scripts use the image processing scripts and the
Azure database.

6.4.5 Resources
Azure database

6.4.6 Interface/Exports
Web application is the interface and the mapping files scripts create CSV files.

7.0 Rover UI Design
7.1 Rover UI Navbar

Located at the uppermost section of the Rover UI:
- BOE logo.
- Battery meter that displays the rover battery.
- A data counter that represents the number of data segments collected.
- Fullscreen button that will transform the view to full screen of the device being used.
- An ID field that accepts the ID of the section to be collected.
- SetID button which sets the ID from the section ID field.
- Start button to begin collecting data.
- Stop button that ends the data collection.
- Reboot button that reboots the rover system.
- Turn off button that shuts down the rover.

7.2 Rover UI Direction and Stop Button

Located on the lower half of the Rover UI:
- Transfers movement of the directional button controls to the direction the rover will navigate

towards.
- The stop button stops all rover movement.

8.0 Database Design
The database is utilized by all aspects of the project, linking the existing data from NavLA to new
data collected by the rover--providing access web server which displays the data in real-time. In
addition, it provides access and stores the images from the GoPro which can then be directly
implemented with the image processing side of things.

8.1 Relational Schema

8.2 Diagram Description

The relational schema as seen in the diagram is organized by the various sources of data in mind.

The leftmost part is the existing data provided by BOE:SWBot, and property tables. It includes
PIN IDs and asset sidewalk IDs which are essential in pinpointing specific properties and sidewalk
locations. Navigate LA data will serve as geographical reference points for the GoPro data and the
rover data listed.

The rightmost data, containing the two Rover Data Tables and GoPro Image Data Table, would be
extracted from the rover itself after collection and uploaded in their respective tables. The
rover_data table consists of collected GPS and slope data along with other identifiers such as input
sidewalk ID and the spatial reference ID. In order to represent the collected data as a shape, the
data is processed and stored in the rover_sw table. The GoPro metadata is contained in the
gp_meta table, which holds the GPS data extracted from the taken images as well as useful
identifiers such as the sidewalk ID.

8.3 Azure blob Storage implementation

Azure Blob Storage is required in order to store a large amount of JPGs--such as the front, rear,

and rendered Images. Image IDs from the GoPro picture data will serve as a link for the images
stored in the blob storage. This method allows us to create a much more efficient method of storing
images and sharing them across different platforms, such as our UI and web applications.

8.4 Data Collection

Data sources include:

1. Rover
a. The main focus as it holds key information that will be used by BOE to prioritize the

locations in need of repairs.
b. GPS Coordinates (Precise Lat and Longitude)
c. Timestamps
d. Leveler - Vertical and Horizontal displacement of the sidewalk

2. GoPro Fusion
a. Forward and Rear facing camera to create a 360 Degree image on the rovers

surroundings
b. Rendered Images
c. Python code to exfiltrate the EXIF/METADATA from each image which provides

another DB table to populate
3. Existing data - Mapped by the BOE on NavLA

8.5 Future Implementation

Future implementations consist of things such as

1. Data Manipulation

o The way data is correlated, either by location or specific timestamps
o Automation of data uploads

2. Data Visualization

o Azure offers Tools which help visualize our data, which offers a unique perspective that
could be implemented into our applications.

3. Image processing

o Azure AI will be utilized to introduce severity levels into our dataset and help reduce the
manual labor and reach our goal faster and more productively.

9.0 User Interface
The user interface tasks are Task 1 for the web application and Task 3 for the rover UI.

9.1 Overview of User Interface

9.1.1 Task 1, Web Application

The web interface will receive image data from Leo Rover’s camera to be transferred to
the website. BOE uses an Azure database for their backend, which we will integrate into
our web application.

Our web application will include a page to display our data. The data to be displayed
includes from the rover, longitude and longitude slope data, Global Positioning System
(GPS) data as well as the image name and date when what image was taken. The images
that will be displayed come from the GoPro fusion camera on the rover, and we will also
be displaying the GoPro metadata which includes, longitude and latitude data. The web
application will have the ability to iterate through the image with a previous button and
next button. The user will be able to pan the image and zoom in and out of the image.

The web application will have additional pages which will describe the purpose of our
project, the overall description, the environment where our project was worked on, and the
algorithms used in this project.

9.2 Screen Frameworks or Images

9.2.1 Task 1, Web Application
The following are wireframes and actual frontend images:

●

●

●

●

9.2.2 Task 3, Rover UI

The following is a screen capture of the Rover UI that the user will use.

9.3 User Interface Flow Model

9.3.1 Task 1, Web Application
The Home, Render, NavigateLA, and About page can freely navigate between each other. As
for the NavigateLA tab, a user is able to download any of the packages provided in the tab.

10.0 Requirements Validation and Verification

Requirement Component Test

Module

Raspberry Pi 3 shall collect
data from modules and
store the data.

Raspberry Pi 3 To be determined in Spring

Accelerometer shall measure
the grade of sidewalk and
send the raw data to
Raspberry Pi 3.

Accelerometer To be determined in Spring

Camera shall be responsible
for taking pictures.

Camera To be determined in Spring

Real-Time Kinematic GPS
unit to record centimeter
accurate coordinates.

GNSS Device To be determined in Spring

11.1 Glossary
For the purposes of this project, the following terms are defined as follows:

BOE City of Los Angeles, Bureau of Engineering

SDD Software Design Document

SRS Software Requirements Specification

Rover Device with wheels that will display the GUI software.

IMU Inertial Measurement Unit

DB Database

NavLA NavigateLA (Site)

EXIF Exchangeable Image File

IDE Integrated Development Environment

GUI Graphical User Interface

Task 1 Web application and mapping files

Task 2 Rover UI

Task 3 Database

12.0 References
● NavigateLA, https://navigatela.lacity.org/navigatela/

● Sidewalk Repair Program Prioritization and Scoring System Council File 14-0163-S3, from the
City of Los Angeles, Bureau of Engineering

● Azure SQL database - https://docs.microsoft.com/en-us/azure/azure-sql/

● Azure Blob - https://docs.microsoft.com/en-us/azure/storage/blobs/

● Leo Rover - h ttps://www.leorover.tech/

● GoPro Fusion - https://gopro.com/content/dam/help/fusion/manuals/Fusion_UM_ENG_REVC.pdf

https://navigatela.lacity.org/navigatela/
https://docs.microsoft.com/en-us/azure/azure-sql/
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://www.leorover.tech/
https://gopro.com/content/dam/help/fusion/manuals/Fusion_UM_ENG_REVC.pdf

