
Software Design
Document (SDD)

for

Sidewalk Slope Monitoring System

Prepared by: Aquil Alam, Alejandro Chanocua, Omar Eclicerio, Ernesto Garcia,
Francisco Gastelum, Henry Gonzales, Gui He, Perla Ramirez, Rishi Shah, Daniel

Zeng

Department of Public Works and Bureau of Engineering, LA City

CSULA Senior Design 2021-2022 / LA City Bureau of Engineering

1

Table of Contents
1.0 Introduction 5

1.1 Purpose 5
1.2 Document Conventions 5
1.3 Intended Audience and Reading Suggestions 5
1.4 System Overview 5

2.0 Design Considerations 7
2.1 Assumptions and Dependencies 7
2.2 General Constraints 7
2.3 Goals and Guidelines 8
2.4 Development Methods 9

3.0 Architectural Strategies 11
3.1 Task 1 11

4.0 System Architecture 13
4.1 Task 1 13
4.2 Task 2 14
4.3 Task 3 16

4.3.1 Rover UI 16
4.4 Task 4 16

4.4.1 Database Data Diagram 16
4.4.2 Sidewalk Table 17
4.4.3 Rover data table 20
4.4.4 Rover sidewalk 22
4.4.5 Sidewalk GoPro Metadata 23

5.0 Policies and Tactics 25
5.1 Choice of which specific products used 25
5.2 Plans for ensuring requirements traceability 26
5.3 Plans for testing the software 26

6.0 Detailed System Design 27
6.1 Raspberry Pi 3 27

6.1.1 Responsibilities 27
6.1.2 Constraints 27
6.1.3 Composition 27
6.1.4 Resources 27
6.1.5 Interface/Exports 27

6.2 Rover User Interface 27
6.2.1 Responsibilities 27
6.2.2 Constraints 27
6.2.3 Composition 27
6.2.4 Uses/Interactions 27
6.2.5 Resources 27
6.2.6 Interface/Exports 28

6.3 Image Processing 28
6.3.1 Responsibilities 28
6.3.2 Constraints 28

2

6.3.3 Composition 28
6.3.4 Uses/Interactions 28
6.3.5 Resources 28
6.3.6 Interface/Exports 28

6.4 Web application and mapping files 28
6.4.1 Responsibilities 28
6.4.2 Constraints 28
6.4.3 Composition 29
6.4.4 Uses/Interactions 29
6.4.5 Resources 29
6.4.6 Interface/Exports 29

7.0 Rover UI Design 30
7.1 Rover UI Input Field and Buttons 30
7.2 Rover UI JoyStick 30

8.0 Database Design 31
8.1 Relational Schema 31
8.2 Diagram Description 31
8.3 Azure blob Storage implementation 31
8.4 Data Collection 32
8.5 Future Implementation 32

9.0 User Interface 33
9.1 Overview of User Interface 33

9.1.1 Task 1, Web Application 33
9.2 Screen Frameworks or Images 33

9.2.1 Task 1, Web Application 33
9.2.2 Task 3, Rover UI 35

9.3 User Interface Flow Model 36
9.3.1 Task 1, Web Application 36

10.0 Requirements Validation and Verification 37
11.0 Glossary 38
12.0 References 38

3

Revision History

Name Date Reason For Changes Version

Aquil Alam 10/4/2021 Fall 2021 Draft Prepare. 1

Perla Ramirez 12/5/2021 Added basic descriptions to sections 1 and 2 1

Perla Ramirez,
Ernesto Garcia
Alejandro
Chanocua,
Aquil Alam

12/5/2021 Fixed formatting for headers, changed table of contents
for automatic updates. Updated descriptions,
contents/explanations for Sections contributed by each
person, details on project elaborated.

1

Daniel Zeng,
Omar Eclicerio

12/5/2021 Modified section 2.3,2.4, 4, 5.1, 6.3, and updated the
table of contents. Content updated.

2

Francisco
Gastelum, Gui He,
Rishi Shah

12/9/2021 Modified sections 2, 3, 4, 5, 6 from a task 1 perspective. 2

Henry Gonzales 12/9/2021 Updated task 1 for each section 2

4

1.0 Introduction
1.1 Purpose
The Sidewalk Slope Monitoring System project is an effort to develop the necessary databases, user
interfaces, and automation scripts to aid the City of Los Angeles, Bureau of Engineering (BOE) in
maintaining over 11,000 miles of sidewalk. Based on their prioritization and scoring system, BOE
can assign a numerical score to each sidewalk segment to determine which segments require
immediate attention or repair for their Sidewalk Repair Program.

The system developed by our team is designed to help BOE in their data collection by building a
robot user interface to control the robot BOE uses during their field analysis, image processing
scripts to extract image information, a web application to display and map image data, and a
database to hold the data collected and extracted by the system.

This document will outline the design the system explained above. See System Overview for an
exact breakdown of the system into tasks.

1.2 Document Conventions
This Software Design Document (SDD) uses a standard documentation template provided by the
California State University, Los Angeles Computer Science department.

1.3 Intended Audience and Reading Suggestions
This document is intended to aid the team members listed in the first page in scoping and
developing their initial software design requirements that will later be refined in the Software
Requirements Specification (SRS) document. This document is intended to breakdown BOE’s
initial project requirements into tasks to aid the team in planning work. The entire document should
be read by the team. Although team members are ultimately held responsible for their specific
tasks, team members should be aware of the entire team’s efforts.

This document is intended to provide BOE and the project advisor an overview of the expected
work to be completed by the team. Sections 2, 6, and 10 should be read by BOE and the project
advisor.

This document is intended to provide a high-level overview of design planning and concepts for
Computer Science students involved in future years’ efforts. Sections 2, 3, 4, 6, 9, and 10 should be
read by Computer Science students who will continue this project beyond Spring 2022.

1.4 System Overview
BOE requires sidewalk data to evaluate sidewalk segments for their Sidewalk Repair Program.
Because there are over 11,000 miles of sidewalk, it is valuable to BOE to leverage a process that
minimizes overhead by automating image and data processing.

To collect the necessary data to assign scores, BOE plans to utilize a Leo Rover robot, with a GoPro
camera mounted on it, to collect images of sidewalk segments in the city of Los Angeles. The

5

system as a whole is broken down into four major components or tasks. The process for BOE to use
our system is as follows:

1. The robot will be accompanied by a field worker that will control it using a user interface
developed by the team. The user interface is hereby referenced to as Task 3.

2. Scripts will be produced in efforts to parse Exchangeable Image File (EXIF) data from the
GoPro images collected. Image processing scripts will be applied to the images to extract
additional data necessary for BOE’s prioritization and scoring system. The image processing
scripts will hereby be referenced to as Task 2 and begin in the Spring 2022 semester.

3. A web application will display the collected images, one at a time, with its related EXIF and
image processing data. In addition, Task 1 will develop scripts to create mapping files that
can be hosted on BOE’s mapping application, NavigateLA. The web application and the
mapping files will hereby be referenced to Task 1.

4. A database developed by the team will contain tables for the processed GoPro EXIF data,
rover data, and GeoJSON ready shapes based on collected sidewalk data. The database is
hereby referenced to as Task 4.

6

2.0 Design Considerations
2.1 Assumptions and Dependencies

● Rover expectations
o Cracks and holes on sidewalks shall be minimal.
o Battery 4 hrs of nominal driving or 8 hrs of video streaming.
o Hardware is reliable.
o User will protect hardware from damage.
o System is waterproof.
o Operator will clear sidewalk before measurement.

● Task 1
o Web application

▪ Web application will be used to view specific or individual sidewalk segment
images and slope data.

▪ Web application will be used to view damage and assign numerical score to
sidewalk segments.

o Mapping files
▪ Mapping files will be viewed by the user by importing them to NavigateLA,

if and only if, mapping files are not hosted on NavigateLA.
▪ Mapping files will contain data for many sidewalk segments.
▪ Mapping files will be viewed by the user by selecting a layer loaded on

NavigateLA, if and only if, mapping files are kept on a database managed by
BOE.

● Task 2
o System will be used during the day to take optimal photos.
o Sidewalk will always be captured as the center of the image
o Rendered images requires user-input before processing measurements

● Task 4
o Rover

▪ User will use GoPro provided app to render 360 Degree Images
▪ User will keep an eye on the rover at all times.
▪ User will manually extract data from rover's memory cards
▪ User will manually control the Rover using the Rover UI.

o Database
▪ User will manually input data into Azure DB
▪ User will manually input sidewalk asset ID after every rover scan.
▪ User will manually input location data fields after every use.
▪ User will denoise the data to get more accurate readings

2.2 General Constraints
● Task 1

o Web application
▪ Web application can use a local instance for development and testing

purposes.

7

▪ Web application must have access to the database containing sidewalk data.
▪ Web application must use database when displaying sidewalk data and

cannot store or use data locally.
▪ Web application must use Azure Storage Blob to access GoPro images.
▪ Web application must use a BOE web server for production.
▪ Web application must be accessible to BOE, either using Internet or Intranet

access.
▪ Web application must be accessible to BOE regardless of their preferred

browser.
▪ BOE must provision a web server for web application production use.
▪ BOE must maintain the web server hosting the web application.
▪ Web application backend will be done using Python/Django.
▪ Web application frontend will be done using HTML/CSS and Bootstrap.

o Mapping files
▪ 3rd party application must use Python language to develop automation scripts.
▪ Mapping files must be generated by scripts using the 3rd party application..
▪ Mapping files must be importable in NavigateLA, if and only if, mapping

files will not be hosted on a database managed by BOE.
▪ Mapping files must maintain all design features, such as color schemes,

annotations, polygons, lines, shapes, when hosted in NavigateLA.
▪ Mapping files must be hosted on NavigateLA when a substantial amount of

mapping files is available for viewing.
▪ A request for a database to host the mapping files can only be placed after

discussing and receiving approval from the advisor and BOE.

2.3 Goals and Guidelines
● Task 1

o Web application
o Web application will be hosted on a web server when the frontend and major

components of the backend are complete.
o Web application’s web server will be discussed with BOE to determine what

languages and web server applications are available to us.
o Mapping files

o Mapping files will be hosted on NavigateLA after receiving approval from
advisor and BOE to request the database. Database will host files that
NavigateLA will reference. Users can select the files as a layer on
NavigateLA.

o Mapping files will be available to uses to import to NavigateLA if a database
is not available or if only a limited section of the city is mapped by the
mapping files.

o Meeting with the advisor and BOE will be required to determine how users
can best view mapping files.

● Task 2
o Image Processing

8

o Implement image segmentation and texture processing methods on images to
easily help find the x and y displacement of a sidewalk.

o Count pixels between two points.
o Convert pixel distance to centimeters.

● Task 3
o Image reading structure for the image processing.
o Utilize sidewalk measurements
o Conjoin the four tasks
o Continue updating Rover UI to provide a more intuitive experience for the user
o Fix bugs in logic of Rover UI
o Test Ui functionality on Rover

● Task 4
o Rover

o Build Leo Rover
o Implement last year's project onto the Leo Rover.
o Implement this year's tasks on the Leo Rover

o Database
o Design a database schema which will include all aspects of the project.

Including but not limited it too, rover, UI’s, and NavLA.
o Create a way to bridge rover data with NavLa data. This might require the

team to map sidewalk coordinates into their own table and use that to
correlate with the existing tables. An algorithm will then be needed to loop
through all the coordinates and make that correlation.

o Create the necessary SQL statements to create said database in an Azure
environment provided by the BOE to begin storing important data.

o Gain access to Azures Blob storage within the BOE’s environment to be able
to store JPG’s.

o Implement Azure tools to help with data manipulation.
o Denoise acquired data to have more accurate estimations

2.4 Development Methods
Components to build a slope monitoring system have been divided into four applicable tasks for
early stages of the system. Development methods are yet to be discussed.

● Task 1
o Web application

▪ Use prior knowledge from web development courses and projects to build
frontend and backend of the site.

▪ Refer to Mozilla and Django’s documentation for best practices and setting
up environment.

▪ Refer to Google’s Maps Javascript API documentation for setting up Map
API on web application.

o Mapping files

9

▪ Reference ArcGIS forums to explore other user’s methods and processes
when developing scripts using ArcGIS

▪ Understanding ArcGIS and developing methods to map rover data and GoPro
metadata

● Task 2
o Use the Grabcut Algorithm from the OpenCV library to easily remove background

noise and segment sidewalks from captured GoPro images.
o Use Euclidean distance method when calculating the distance between two points to

find x and y displacement in pixels.
o Cleaning up the data that is being collected by the Rover using histograms and

boxplots to visualize outliers that should be removed.
o Currently using Z-Test to identify outliers and removing them from categories that

are important.
● Task 3

o Rover User Interface allows field users to control the rover and collect sidewalk
data.

● Task 4
o Database allows for access to storage from all aspects of the project.
o Sources of data are the rover with numerical data as well as the GoPro with image

and EXIF data collected upon testing; incorporated with the corresponding sidewalk
data provided by BOE.

o Organized in Azure Data Studio to efficiently manipulate and connect data from all
sources including the rover as well as other image data.

o With the large number of images involved, Azure Blob storage is implemented for
easy access from other tasks.

o Denoise collected data to remove outliers by looking through the data and finding
duplicates or data with extreme differences compared to the other data.

10

3.0 Architectural Strategies

3.1 Task 1
● Web application

o Used Django to combine HTML, CSS, Bootstrap for frontend and Python for
backend.

▪ Python libraries are heavily used in parsing and processing image data both
in task1 and in other tasks.

▪ Enables team to utilize each other’s scripts and combine efforts without being
concerned with language compatibility.

▪ Django uses templates that make it easier in developing the backend.
▪ Django testing environment can easily be created. Existing environment can

easily be replicated following Django and Mozilla’s documentation.
▪ Django, Mozilla, and Python have an extensive set of documentation that we

have heavily depended on to ensure our product is created with best
practices.

o Python used to create scripts to parse EXIF data from GoPro images
o Python used to create scripts that extract database data and to extract images from

Azure Storage Blob
o Depending on web server availability from liaison, the Django environment will be

recreated for a production environment. Dependencies on liaison’s web server
application may cause changes to our current use of Django to another widely
supported web framework.

● Mapping files
o Used ArcGIS to automate the creation of shapefiles that will be mapped on

NavigateLA.
▪ ArcGIS videos and explanations, pages regarding app use and how to use the

ArcGIS program.
▪ ArcGIS supports location and GPS coordinates, which allows us to use EXIF

GPS data and map it easily on NavigateLA.
o Other mapping applications such as ArcGIS are available and their file types are

supported by NavigateLA.
▪ ArcGIS is also available to students for free from the university, but is only

accessible via Parallels Client, a remote desktop application that allows users
to access campus servers containing the application. Because we are
remotely accessing the server from our personal machines, performance is
limited and requires an internet connection.

▪ ArcGIS is also used by BOE.
o Once many mapping files are created to cover a large portion of the city of Los

Angeles, the mapping files can be hosted on NavigateLA.
▪ Users would be able to select our layers on NavigateLA.

11

▪ Otherwise, users would need to import the mapping files and apply color
schemes. When imported to NavigateLA, color schemes are not maintained.
Any colors or annotations applied to the mapping file is forgotten.

▪ However, in order for the layer to be hosted on NavigateLA, large amounts
of sidewalk data and fully functioning automation scripts are required. This
would develop many, or perhaps a large shapefile, that covers a large portion
of the city of Los Angeles. We can then request a database from the liaison to
host our data so that NavigateLA users can select the layer.

12

4.0 System Architecture
The main functionalities of the system are divided into four tasks, then brought together at the end.
The four tasks; create a web application for rover data, implement image processing, create a user
interface for rover controls, and create a backend database.

4.1 Task 1
● Web Application

o The web application will display a GoPro image and all of its related data on the
console. This includes GPS data, slope data, and other data. Users can switch back
and forth between images, use the auto feature so that the position in the sidewalk
moves forward showing many images, or search for specific images based on GPS
coordinates and image name.

o The web application is intended to show one instance of a sidewalk segment at a
time. It will not provide an overview of the entire city of Los Angeles.

o Data shown on the web console is obtained from the Azure storage and SQL Server
database. The console contains data from the image processing and database teams.

13

● Mapping files
o Mapping files will pull data from the Azure database. It will map the GPS

coordinates and the sidewalk to a shapefile in ArcGIS app.
o The shapefile can then either be imported or hosted on NavigateLA.
o The shapefile can provide an overview of the entire city of Los Angeles. Users can

also zoom in to a section of the map and view annotations or additional notes
creating during the automation scripts.

4.2 Task 2
Implements the functionalities to process the images rendered and stored by the rover camera.
Currently, the program reads an image and applies image processing algorithms using the OpenCV
library.

Algorithms in use:
Image Thresholding and Canny Edge Detection

Image Segmentation and Grabcut Algorithm

Current goal of this task is to count the pixels so it can be scaled onto real unit measurement,
specifically in centimeters. The above images can easily help find the edges of the sidewalk to

14

precisely locate the starting and ending points for each of the x and y displacements. Then we can
calculate the distance between those two points to find the pixel distance.

The ultimate goal is to get the measurements of the horizontal and vertical displacements on the
sidewalk. Once we find the pixel distance for the x and y displacements, we convert it to
centimeters. Those measurements will be used as part of the parameters in labeling the priority of
the sidewalk images.

15

4.3 Task 3
4.3.1 Rover UI

This Rover UI allows manual control of the Leo Rover. Input field for the Sidewalk ID corresponds
to the sidewalk segment to start collecting data. Data is stored on the SD card on the rover to be
post processed.

4.4 Task 4
4.4.1 Database Data Diagram

16

4.4.2 Sidewalk Table
This dataset contains an inventory of City of Los Angeles Sidewalks and was digitized using
a combination of G.I.S software, aerial imagery (2014 LARIAC), and geographic dataset of
property/right-of way lines. Dataset is not actively being maintained. Last updated:
2/23/2021

Table Name - sdwk.sidewalk_wm

Column name Type Descriptive
name

Allow Nulls Description

OBJECTID INT Object Field
Asset Identifier

NO A unique
feature
identifier
populated by
Los Angeles
City Staff for
internal use.

SIDEWALK_ID INT Sidewalk
Identifier

NO A unique
feature
identifier
populated by
Los Angeles
City staff for
internal use.

ASSETID INT Asset Identifier NO A unique
feature
identifier
populated by
Los Angeles
City staff for
internal use.

FEATURETYPE NVARCHAR
(16)

Feature Type NO Describes the
type of feature
class(sidewalk/r
amp/driveway/e
tc) the data
belongs to.

PIND NVARCHAR
(14)

Parcel
Identification
Number

NO A unique Parcel
Identification
Number (PIN)
for all parcels

17

within the City
of L.A. All
Sidewalk
related features
will be split,
non-overlappin
g, and have one
associated PIN.

CALC_WIDTH FLOAT Calculated
Width

NO A generalized
width of the
feature
calculated using
spatial and
mathematical
algorithms on
the feature.
Widths are
rounded to the
nearest whole
number. In
cases where
there is no
value for the
width, the
applied
algorithms were
unable to
calculate a
reliable value.

CALC_LENGTH FLOAT Calculated
Length

NO A generalized
length of the
feature
calculated using
spatial and
mathematical
algorithms on
the feature.
Lengths are
rounded to the
nearest whole
number. In
cases where
there is no

18

value for the
length, the
applied
algorithms were
unable to
calculate a
reliable value.

CALC_MIN_WI
DTH

FLOAT Calculated
Minimum
Width

NO In almost all
cases where
features have
variable widths,
the minimum
width is used.

CALC_MIN_LE
NGTH

FLOAT Calculated
Minimum
Length

NO In almost all
cases where
features have
variable widths,
the minimum
length is used.

NOTES NVARCHAR
(255)

Notes YES Short notes
created by

CRTN_DT DATETIME(
7)

Creation Date NO Indicates date
feature was
created

USER_ID NVARCHAR
(20)

User Identifier NO Name of field
agent
responsible for
feature input

LST_MODF_DT DATETIME(
7)

Last Modified
Date

NO Indicates date
feature was
revised/edited

SHAPE GEOMETRY Shape NO A polygon that
represents
paved
pedestrian
walkways. The
polygon is
constructed by

19

several GPS
(Latitude,
Longitude)
coordinates.
The first
coordinate of
the polygon will
also always be
the last
coordinate.

4.4.3 Rover data table
The rover data table was created to store data extracted from rover output files. The table
contains GPS coordinates, slope measurements, and information of the file the data
originated from. All coordinates and geometry data are in Web Mercator(SR3857) format
and can be used to locate a position on any map system using SR3857.

Table Name - sdwk.rover_data

Column name Type Descriptive
name

Allow Nulls Description

ID INT Identifier NO Incremental
number used for
indexing.

INPUT_SW_ID INT Input Sidewalk
Identifier

NO Numeric
identifier
assigned by
field agent.
Identifiers
should be
referenced from
the sidewalk
table.

RAW_GPS NVARCHAR(1
00)

Raw GPS Text NO Text string
extracted
directly from
rover output csv
file.

LATITUDE FLOAT Latitude NO Latitude
coordinates
extracted from

20

GPS values in
SR:3857
format.

LONGITUDE FLOAT Longitude NO Longitude
coordinates
extracted from
GPS values in
SR:3857
format.

DATE DATE Date NO Date indicating
the recording of
GPS data

SLOPE_X FLOAT Slope X NO X slope value
extracted from
rover data
recording.

SLOPE_Y FLOAT Slope Y NO Y slope value
extracted from
rover data
recording.

SHAPE GEOMETRY Shape NO Spatial point
geometry
created from
latitude and
longitude
referencing
GPS position
rover data was
recorded.

RECORD_FIL
E

NVARCHAR(1
00)

Recorded File
Name

NO File name of
.csv file
recorded data
was extracted
from.

SRID INT Spatial
Reference
Identifier

NO Spatial
reference
identifier
denoting the
format GPS

21

coordinates are
in.

4.4.4 Rover sidewalk
The rover sidewalk was created to store spatial geometry generated per output file from the
rover. Every GPS coordinate collected from the output file is used to create a polygon
(SHAPE) that can be used to generate an outline of the portion of sidewalk traversed by the
rover. The default spatial reference id is 3857 and all relative coordinate data is formatted in
that manner.

Table Name - sdwk.rover_sw

Column name Type Descriptive
name

Allow Nulls Description

ID INT Identifier NO Auto
incrementing
number used for
indexing.

INPUT_SW_ID INT Input Sidewalk
Identifier

NO Numeric
identifier
assigned by
field agent.
Identifiers
should be
referenced from
the sidewalk
table.

SHAPE GEOMETRY Shape NO A polygon that
represents the
sidewalk
positions the
rover traversed.
The polygon is
constructed by
several GPS
(Latitude,
Longitude)
coordinates.
The first
coordinate of
the polygon will
also always be

22

the last
coordinate.

RECORD_FIL
E

NVARCHAR(1
00)

Recorded File
Name

NO File name of
.csv file
recorded data
was extracted
from.

SRID INT Spatial
Reference
Identifier

NO Spatial
reference
identifier
denoting the
format GPS
coordinates are
in.

4.4.5 Sidewalk GoPro Metadata
The Sidewalk GoPro Metadata table was created to store metadata extracted from GoPro
images. The GPS coordinates from the metadata is useful to associate the image taken to a
position on the map. The IMAGE_NAME can also be used to locate the image file from the
Azure Blob store. The ROVER_SW_ID references the INPUT_SW_ID from the
sdwk.rover_sw table. To find the sidewalk id associated with the image, a geometric point is
created from the latitude and longitude of the metadata to find the nearest geometry from the
sdwk.rover_sw table to that point and assign the associating INPUT_SW_ID.
Table Name - sdwk.gp_meta

Column name Type Descriptive
name

Allow Nulls Description

ID INT Identifier NO Auto
incrementing
number used for
indexing.

IMAGE_NAM
E

NVARCHAR(5
0)

Image File
Name

NO Image file name
where metadata
was extracted
from. This is
used to locate
the image from
the Azure blob
store.

DATETIME SMALLDATET Date time NO Date and time

23

IME of image
recording.

LATITUDE FLOAT Latitude NO Latitude
position for
where the
image was
taken.
Coordinates are
in SR:3857
format.

LONGITUDE FLOAT Longitude NO Longitude
position for
where the
image was
taken.
Coordinates are
in SR:3857
format.

ROVER_SW_I
D

INT Rover Sidewalk
Identifier

YES The sidewalk id
the image was
estimated to be
recorded at. A
geometric point
is created from
the longitude
and latitude
values and used
to find the
closest rings to
that point and
the sidewalk id
is taken from
the row
containing the
rings.

SRID INT Spatial
Reference
Identifier

NO Spatial
reference
identifier
denoting the
format GPS
coordinates are

24

in.

5.0 Policies and Tactics
5.1 Choice of which specific products used

● Task 1
o Web application

▪ Django
● Django uses Python for its backend. See Python under the mapping

files bullet point to view why we select Python.
▪ HTML, CSS, and Bootstrap
▪ Google Map Javascript API

o Mapping files
▪ ArcGIS

● Program available to automate mapping file creation. Forums and
documentation thoroughly explains how app may be used and
provides sample use cases.

▪ Python
● Existing scripts from previous years efforts use this language. Python

has an extensive library that can provide parsing and data processing
abilities that is not readily available in other languages.

● Task 2
o OpenCV Library

▪ OpenCV library was chosen for image processing because it provides many
functions that helps with image segmentation.

▪ Our advisor recommended using OpenCV.
● Task 3

o Rover UI was implemented using HTML and Bootstrap library.
o We choose to use a Python IDE due to the Rover we acquired, Leo Rover, uses a

Raspberry Pi microprocessor. The database we choose is the Azure database based
on our liaison, the city of los Angeles, using the same database. This is so we can
transfer our data freely between the liaison and our project.

● Task 4
o Rover

▪ Leo Rover was chosen as a replacement for our previous rover “Robecca ''
because it's more versatile, price friendly, and is a good platform to base a
fleet of rovers on.

▪ GoPro Fusion was chosen as our camera because it offers a 360-degree view
of the rovers surrounding with only one product.

25

o Database
▪ Azure SQL database was chosen by our corresponding liaisons because it’s

what they are currently using themselves.
▪ Azure Blob storage was chosen as a solution for image storage because it

integrates to Azure DB nicely and it’s the most cost-effective method
available to the BOE.

5.2 Plans for ensuring requirements traceability

● Task 1
o Web application

▪ Backend is actively extracting data from the Azure storage and SQL Server
database. It is not storing or using local data.

o Mapping files
▪ Automation scripts create shapefiles that meet the design requirements.

Design requirements include color schemes based on BOE’s prioritization
and scoring system, annotations for slope, etc.

5.3 Plans for testing the software
● Task 1

o Web application
▪ Users can view an image. The administrators can confirm that the image

shown, and its pulled data are related.
▪ Users can flip through the images and its related data is shown. See the first

bullet point.
▪ Users can auto flip through the images and all related data is shown. See the

first bullet point.
▪ Django local server will be created for testing purposes

o Mapping files
▪ When running the ArcGIS app, it pulls data from the Azure database and

create shapefiles.
▪ The shapefiles must display the shape of a sidewalk with annotations and any

needed color schemes (applying color schemes based on BOE’s prioritization
and scoring system).

● Quality Control

26

6.0 Detailed System Design
6.1 Raspberry Pi 3

6.1.1 Responsibilities
The role of this module will be to compute and store data captured by the rover modules
such as Camera and Accelerometer.

6.1.2 Constraints
Possible constraint of this module would be the memory size of the MicroSd Card attached
to the rover.

6.1.3 Composition
A description of the use and meaning of the subcomponents that are a part of this
component.
Uses/Interactions
User interaction to power the Raspberry Pi 3

6.1.4 Resources
This is the main module that will power the accelerometer and camera.
They are dependent on Raspberry Pi 3

6.1.5 Interface/Exports
CSV file will export data from the MicroSd card into the database.
Interface Linux.

6.2 Rover User Interface
6.2.1 Responsibilities
The primary responsibility of the rover interface is to allow the user to access, move, and to
automate data collection using the rover.

6.2.2 Constraints
Constraints of this component would be based on the sidewalk condition, any debris would
give inaccurate results.

6.2.3 Composition
Extra camera added on the rover is a GoPro. It is responsible for capturing photos of the
sidewalk where data was recorded.

6.2.4 Uses/Interactions
The rover user interface will be used to control the rover movements and ability to collect
data. The rover user interface will interact with the Bureau Of Engineering field workers.

6.2.5 Resources
Rover UI

27

6.2.6 Interface/Exports
The interface has been coded with python tkinter toolkit. The exports available will be a
data CSV file.

6.3 Image Processing
6.3.1 Responsibilities
Image processing functionalities will be implemented for the images taken from the GoPro
camera attached to the Rover. The functionalities include measuring the XY (vertical and
horizontal) displacements on the sidewalk and eventually categorize the images according to
their condition.

6.3.2 Constraints
Measuring the vertical displacement is the close to impossible. The angle of the images
being take from the camera doesn’t show the distance from an overhead view.

6.3.3 Composition
We use OpenCV or Open-Source Computer Vision library that is compatible with Python
for image processing functionality. We currently use Pycharm IDE to utilize those
components.

6.3.4 Uses/Interactions
If the strokes for Grabcut technique mentioned earlier cannot be implemented automatically,
user strokes are a requirement to isolate the sidewalk, when measurements are made.

6.3.5 Resources
Beginning stages don’t require any resources other than the images used to learn and test
OpenCV algorithms.

6.3.6 Interface/Exports
OpenCV library built in GUI with input and processed image.

6.4 Web application and mapping files
6.4.1 Responsibilities
The web application is a console for users to view a single instance of a GoPro image and its
related data. The mapping files script will create DWG files automatically that can either be
imported or hosted on NavigateLA. The DWG files will contain data from the GoPro image,
too.

6.4.2 Constraints
Web applications will be developed in a test environment locally. If the liaison provides a
web server, the web application will be moved to a production environment. The mapping
files will be imported to NavigateLA. If many mapping files are creating using sidewalk
data, the mapping files can be hosted on NavigateLA. This depends on the amount of
sidewalk data collected, GoPro images available, and a database to host the mapping files.

28

6.4.3 Composition
The web application is the web console that users interact with. The mapping files are
automation scripts the create DWG files.

6.4.4 Uses/Interactions
The web application and the mapping files scripts use the image processing scripts and the
Azure database.

6.4.5 Resources
Azure database, image processing scripts

6.4.6 Interface/Exports
Web application is the web console and the mapping files scripts create DWG files.

29

7.0 Rover UI Design
7.1 Rover UI Input Field and Buttons

Located on the nav bar:
- The input field allows the user to input the desired sidewalk ID.
- Set SID sets the imputed sidewalk ID.
- Start begins the data collection process on the Leo Rover.
- Stop ends the data collection process on the Leo Rover.
- Reboot, reboots the Leo Rover.
- Turn Off, shuts down the Leo Rover.

7.2 Rover UI JoyStick

Located on the lower half the Rover UI:
- Transfers directional movement of the joystick to direction the rover will navigate towards.

30

8.0 Database Design
The database is utilized by all aspects of the project, linking the existing data from NavLA to new
data collected by the rover--providing access web server which displays the data in real-time. In
addition, it provides access and stores the images from the GoPro which can then be directly
implemented with the image processing side of things.

8.1 Relational Schema

8.2 Diagram Description
The relational schema as seen in the diagram is organized by the various sources of data in mind.

The leftmost part is the existing data provided by BOE:SWBot, and property tables. It includes PIN
IDs and asset sidewalk IDs which are essential in pinpointing specific properties and sidewalk
locations. Navigate LA data will serve as geographical reference points for the GoPro data and the
rover data listed.

The rightmost data, containing the two Rover Data Tables and GoPro Image Data Table, would be
extracted from the rover itself after collection and uploaded in their respective tables. The
rover_data table consists of collected GPS and slope data along with other identifiers such as input
sidewalk ID and the spatial reference ID. In order to represent the collected data as a shape, the data
is processed and stored in the rover_sw table. The GoPro metadata is contained in the gp_meta
table, which holds the GPS data extracted from the taken images as well as useful identifiers such
as the sidewalk ID.

8.3 Azure blob Storage implementation
Azure Blob Storage is required in order to store a large amount of JPGs--such as the front, rear, and
rendered Images. Image IDs from the GoPro picture data will serve as a link for the images stored
in the blob storage. This method allows us to create a much more efficient method of storing images
and sharing them across different platforms, such as our UI and web applications.

31

8.4 Data Collection
Data sources include:

1. Rover
a. The main focus as it holds key information that will be used by BOE to prioritize the

locations in need of repairs.
b. GPS Coordinates (Precise Lat and Longitude)
c. Timestamps
d. Leveler - Vertical and Horizontal displacement of the sidewalk

2. GoPro Fusion
a. Forward and Rear facing camera to create a 360 Degree image on the rovers

surroundings
b. Rendered Images
c. Python code to exfiltrate the EXIF/METADATA from each image which provides

another DB table to populate
3. Existing data - Mapped by the BOE on NavLA

8.5 Future Implementation
Future implementations consist of things such as

1. Data Manipulation
o The way data is correlated, either by location or specific timestamps
o Automation of data uploads

2. Data Visualization
o Azure offers Tools which help visualize our data, which offers a unique perspective

that could be implemented into our applications.
3. Image processing

o Azure AI will be utilized to introduce severity levels into our dataset and help reduce
the manual labor and reach our goal faster and more productively.

32

9.0 User Interface
The user interface tasks are Task 1 for the web application and Task 3 for the rover UI.

9.1 Overview of User Interface

9.1.1 Task 1, Web Application
The web interface will receive image data from Leo Rover’s camera to be transferred to the
website. BOE uses an Azure database for their backend, which we will integrate into our
web application.

Our web application will include a page to display our data. The data to be displayed
includes from the rover, longitude and longitude slope data, Global Positioning System
(GPS) data as well as the image name and date when what image was taken. The images
that will be displayed come from the GoPro fusion camera on the rover, and we will also be
displaying the GoPro metadata which includes, longitude and latitude data. The web
application will have the ability to iterate through the image with a previous button, next
button, and an auto button. The auto button will iterate through the images automatically,
with each image showing for 2 seconds. The user will be able to pan the image and zoom in
and out of the image. The web application will have a function to search through the
database of pictures by the images name or coordinate which the image was taken from.

The web application will have additional pages which will describe the purpose of our
project, the overall description, the environment where our project was worked on, and the
algorithms used in this project.

9.2 Screen Frameworks or Images

9.2.1 Task 1, Web Application
The following are wireframes and actual frontend images:

33

●

●

34

●

9.2.2 Task 3, Rover UI

35

9.3 User Interface Flow Model

9.3.1 Task 1, Web Application
The Home, Render, Database and About page can freely navigate between each other.
However, the NavigateLA tab is different. It takes the user to a different webpage,
https://navigatela.lacity.org/. Once at NavigateLA, the user cannot navigate back to the web
application.

36

https://navigatela.lacity.org/

10.0 Requirements Validation and Verification

Requirement Component Test

Module

Raspberry Pi 3 shall collect
data from modules and store
the data.

Raspberry Pi 3 To be determined in Spring

Accelerometer shall measure
the grade of sidewalk and
send the raw data to
Raspberry Pi 3.

Accelerometer To be determined in Spring

Camera shall be responsible
for taking pictures.

Camera To be determined in Spring

Real-Time Kinematic GPS
unit to record centimeter
accurate coordinates.

GNSS Device To be determined in Spring

37

11.0 Glossary
For the purposes of this project, the following terms are defined as follows:

BOE City of Los Angeles, Bureau of Engineering

SDD Software Design Document

SRS Software Requirements Specification

Rover Device with wheels that will display the GUI software.

IMU Inertial Measurement Unit

DB Database

NavLA NavigateLA (Site)

EXIF Exchangeable Image File

IDE Integrated Development Environment

GUI Graphical User Interface

Task 1 Web application and mapping files

Task 2 Image processing

Task 3 Rover UI

Task 4 Database

12.0References
● NavigateLA, https://navigatela.lacity.org/navigatela/
● Sidewalk Repair Program Prioritization and Scoring System Council File 14-0163-S3, from

the City of Los Angeles, Bureau of Engineering
● Azure SQL database - https://docs.microsoft.com/en-us/azure/azure-sql/
● Azure Blob - https://docs.microsoft.com/en-us/azure/storage/blobs/
● Leo Rover - https://www.leorover.tech/
● GoPro Fusion -

https://gopro.com/content/dam/help/fusion/manuals/Fusion_UM_ENG_REVC.pdf

38

https://navigatela.lacity.org/navigatela/
https://docs.microsoft.com/en-us/azure/azure-sql/
https://docs.microsoft.com/en-us/azure/storage/blobs/
https://www.leorover.tech/
https://gopro.com/content/dam/help/fusion/manuals/Fusion_UM_ENG_REVC.pdf

