
Software Design
Document

for

Satellite Anomaly Injection &
Detection Testbed

Version 1.0 Approved

Prepared by Alex Huang, Jerome Pineda, Samantha Simpson,
Nicholas Torres, Joshua Tran

CSULA / The Aerospace Corporation

May 14, 2021

1

Table of Contents
Table of Contents 1

Revision History 3

1. Introduction 4
1.1. Purpose 4
1.2. Document Conventions 4
1.3. Intended Audience and Reading Suggestions 4

2. Design Considerations 5
2.1 Assumptions and Dependencies 5
2.2 General Constraints 5
2.3 Goals and Guidelines 5
2.4 Development Methods 5

3. Software Overview 6
3.1. Software Components 6
3.2. Software Deliverables 6

3.2.1. Anomaly Injection 6
3.2.2. Onboard Anomaly Detection 6
3.2.3. Ground Based Anomaly Detection 6

4. Softwares Architecture 7

5. Detailed System Design 9
5.1. Anomaly Injection 9

5.1.1. High Level Overview 9
5.1.2. Denial of Service Injection 10
5.1.3. Invalid Command Sequence Injection 11
5.1.4. Memory Leak Injection 12
5.1.5. Runaway Tasks Injection 13
5.1.6. Single Bit Error Injection 14

5.2. Onboard Anomaly Detection 15
5.2.1. High Level Overview 15
5.2.2. Single bit error Onboard Detection 15
5.2.3. Memory Leak Onboard Detection 16
5.2.4. Runaway Task Onboard Detection 16

5.3. Ground Based Anomaly Detection 16
5.3.1. High Level Overview 17
5.3.2. Invalid Command Sequences Ground Detection 17

2

5.3.3. Denial of Service Ground Detection 18

6. Requirements Validation and Verification 19

7. Glossary 22

8. References 23

3

Revision History

Name Date Reason For Changes Version

Architecture
& Requirements
Committee

5/14/2021 Initial Draft Version 1.0

4

1. Introduction

1.1. Purpose
This document serves to record how the requirements for the SAID Testbed shall be implemented. It will
expand on the Software Requirements Specifications' functionalities and provide details on how each
module is to be executed, their purpose, and how they all interact with each other. This document's
completed state will be ready for the development team to develop the expected software.

1.2. Document Conventions
Bold lettering signifies a new section and shall have relevant information below. Font size shall
indicate the hierarchical structure of content with larger fonts indicating general concepts and
smaller fonts indicating more specific content.

1.3. Intended Audience and Reading Suggestions
This Software Requirements document is intentional for:

● Software Developers can review the project's capabilities and more easily understand
where their efforts should target to improve or add more features to it.

● Project testers can use this document as a base for their testing strategy as some bugs are
easier to find using a requirements document. This way of testing becomes more
methodically organized.

● Project reviewers can use this document as a base for analyzing and critiquing design
plans.

● Project managers can use this document to help the project team plan how they should
implement its quality control.

● End-users of this application who wish to read about what this project can do.
● End-users can use this document to read the capabilities of the application.

5

2. Design Considerations

2.1 Assumptions and Dependencies
● Ubuntu Operating System (18.04 LTS)

2.2 General Constraints
● Onboard Anomaly Detection (OAD). CPU on the satellite has limited cycles and a

processor that runs on a single thread. The OAD needs to be lightweight and not consume
too much power.

2.3 Goals and Guidelines
● Use as much open source software as possible to reduce engineering time.
● Employ KISS (“Keep it simple stupid”) principle as much as possible.
● Research and understand possible system anomalies.
● Design with modularity in mind for ease of rapid development.
● Design injections purely for demonstration purposes.
● The software will aim to run detection capabilities on its own.
● Goal is to complete the project by the end of the Spring 2021 semester.

2.4 Development Methods
A combination of Agile and Waterfall development methods.

● Waterfall methodology as we gather information from Aerospace and become more
acquainted with the necessary software. As well as research to develop a clear
understanding of anomalies and normalcy of desired features. Sequentially the project
plan is created to accommodate those requirements.

● Agile software development methods as we work collaboratively between committees.
Requirements and solutions will evolve through collaboration between self-organizing
cross-functional teams.

6

3. Software Overview

3.1. Software Components
Reference SRS document section 3.3 Software Interfaces.

3.2. Software Deliverables
Anomaly Injection, Onboard Anomaly Detection, and Ground Based Anomaly Detection are the
three software deliverables the SAID Testbed team is developing.

3.2.1. Anomaly Injection
The anomaly injection unit allows the user to inject anomalies into the OSK environment.
Anomaly injection has an automated process that will inject a random anomaly at a random time.
The user will have control to turn on and off the automated process.

3.2.2. Onboard Anomaly Detection
The onboard anomaly detection system will contain lightweight routines (in the form of an OSK
app) to handle the detection of single-bit errors, runaway tasks, denial of service, and memory
leaks. Each error shall contain its method of detection separate from one another.

3.2.3. Ground Based Anomaly Detection
The ground-based anomaly detection shall contain a process to detect invalid command
sequences entered by the user. Invalid command sequences are a string of commands that would
cause unintended behavior from the satellite to occur. An example of this would be a command
to rotate a satellite arm in a direction that is impossible for the satellite. The detection system will
detect and notify the user of such sequences.

7

4. Softwares Architecture

Figure 4 - 1 Level 0 Data Flow Diagram

8

Figure 4 - 2 Level 1 Data Flow Diagram

9

5. Detailed System Design

5.1. Anomaly Injection
The anomaly injection software shall allow the user to trigger a one-off anomaly of their choice
by entering a command line or the command and telemetry server of OSK. This set of commands
will be made using the custom command reference on the OSK GitHub repository. The injection
will then be executed in the injection module of the deliverables for the chosen command. The
API that shall be used for anomaly injection shall include the software bus for inter-application
communication and anomaly injection.

Note: Any anomaly that is created will affect the OSK system. OSK has a built in reset button
that will revert the system back into its original state before the anomaly was injected.

5.1.1. High Level Overview
The injection software shall catch messages from the software bus and parse them to execute the
chosen anomaly. The development team will decide the message structure. The software bus is
utilized to receive anomaly execution messages initiated by the user and execute anomalies in the
OSK environment.

10

5.1.2. Denial of Service Injection
Since COSMOS-CFS communication uses a local connection and never connects to an external
router, we cannot legitimately “flood the network” which causes the denial of service.

To simulate a DOS, we will use a network flooding tool to inject hundreds of TCP packets to a
specific IP address. In our case, we will use Ruby Script on COSMOS to execute this inject

command on our own system. When traffic goes above x, we will send a command to disconnect
the socket/communication for COSMOS-CFS. (if this is possible from the ground side)

Figure 5 - 1 Denial of Service Injection

11

5.1.3. Invalid Command Sequence Injection
I. Modify 42 code

II. Create duplicate command
III. Modify command to change order
IV. Code change sends incorrect command to 42 *from COSMOS
V. 42 unable to process command

VI. Indicates error message to COSMOS

Figure 5 - 2 Invalid Command Sequence Injection

12

5.1.4. Memory Leak Injection
I. Create a dummy app that is allocated to a large section of memory

II. App gets assigned to CFs
III. Telemetry data receives CFs function and loads onto software bus
IV. Function is then injected with an expected error output

Figure 5 - 3 Memory Leak Injection

13

5.1.5. Runaway Tasks Injection
I. Spawn orphan thread that dynamically allocates memory

II. Function injected into CFs
III. Telemetry data pushes function onto software bus
IV. Function is then injected with an expected increase in slow time

Figure 5 - 4 Runaway Task Injection

14

5.1.6. Single Bit Error Injection
I. Create a dummy application (SBEI) and make the “rewritable” memory of the satellite.

II. Use the core Flight Executive (cFE) API to read and write the memory into SBEI.
III. Read the memory of SBEI
IV. Flip one bit of SBEI by using an XOR operator
V. Use the flipped bit and write that back into SBEI

Figure 5-5 Single Bit Error Injection

15

5.2. Onboard Anomaly Detection
The onboard anomaly detection shall be responsible for the detection of the following anomalies:

● Single bit errors
● Memory leaks
● Runaway tasks

This system shall also alert the user of the presence of any of the above anomalies. The onboard
anomaly detection system shall interact with other critical applications using the software bus
API (see section 6.3) offered by OSK. All three anomalies will have different methods of
detection and will always be running in the background. Onboard anomaly detection processes
are intended to be lightweight to consume minimal computational resources onboard the
spacecraft. Anomalies such as invalid command sequences and denial of service are more
computationally intensive with the abnormalities mentioned above and are on the ground system
(Section 5.3).

5.2.1. High Level Overview
The onboard anomaly detection cFS application shall be a background process that checks for
anomalies within the system. Onboard detection shall use the “cfe_sb.h” header file to interact
with the software bus.

5.2.2. Single bit error Onboard Detection
The single-bit error anomaly detection algorithm shall periodically run the checksum function on
the region of memory targeted for single-bit errors. The value returned by the checksum function
shall be compared against the latest call to checksum. If there is a discrepancy, an error will be
thrown. Otherwise, the algorithm continues as expected, continuously running and verifying the
checksum against its last call.

I. Call Checksum to all memory tables
II. If checksum returns 1, continue

III. Else if checksum returns 2, trigger Anomaly notification

16

5.2.3. Memory Leak Onboard Detection
Memory leaks will be handled by using the memory manager app. The memory manager cFS
application is capable of detecting memory leaks when pointed to a region of memory. The
injection algorithm will dynamically allocate several bytes without calling the free function, thus
creating a memory leak. The process responsible for detecting memory leaks shall periodically
call the memory manager and verify that there are no memory leaks in the region of memory
targeted for memory leaks.

I. Memory Leak Detection
II. All data storage tables are monitored

III. Code runs to detect error count
IV. If error count exceeds 10, ping anomaly
V. Else, continue running

5.2.4. Runaway Task Onboard Detection
Runaway tasks shall be handled by using the health and safety app. The detection app shall
communicate with the health and safety app to monitor computational resource consumption by
apps. Injected runaway tasks shall be designed to consume ample resources, which will be
caught by the health and safety cFS app, and feedback will be sent to the detection app. The
detection app will subsequently notify the user of the runaway task.

I. All data storage tables are monitored
II. Utilize Health and Safety applications to check resource consumption.

III. Review all resource allocations
IV. If resource exceeds overload consumption, ping anomaly
V. Else, keep running

5.3. Ground Based Anomaly Detection
The ground-based anomaly detection algorithm is for the following anomalies:

● Denial of service
● Invalid command sequences

These two anomalies have been selected for ground-based detection to ease onboard cFS
computation and improve the detection system's functionality as the denial of service. Invalid
commands closer to the ground system than the previous anomalies. The API used is the
software bus API for inter-application communication and the time services API for denial of
service time thresholds.

17

5.3.1. High Level Overview
The detection software shall be implemented alongside the COSMOS apps and shall act as an
intermediary between the ground base and satellite communications. Denial of service shall use
the time services API to detect abnormal request-response cycle times for each request. It will
also detect the UDP socket’s status and throw an error if it becomes overloaded with requests or
disconnects from cFS aboard the satellite. Commands will first be sent through the detection app
and processed. If the command is possible to execute, the command will be sent to cFS.
Otherwise, an error shall be thrown.

5.3.2. Invalid Command Sequences Ground Detection
Invalid command sequences shall first be passed through the detection application and be
processed. The detection application will simulate what will happen after the command runs. If
no errors are present after running the command, then the command is sent to the satellite. If an
error is present after processing, then an error is thrown, and the user is notified of an invalid
command.

I. Run background command sequence detection every time a command is input
II. If command is called on COSMOS

A. -Is command Successful?
Yes: Run as intended on 42
No: Send Anomaly Notification

18

5.3.3. Denial of Service Ground Detection
There will be a Ruby Script for detection to continuously monitor the network traffic. If the
traffic goes above x, it will output a notification of DOS to COSMOS.

19

6. Requirements Validation and Verification

6.1.1 Anomaly Injection
Requirement No. Requirement Desciption Verification and

Validation Method
6.1.1.1 The anomaly injection shall inject the

following anomalies
● Runaway Tasks
● Memory leaks
● Denial of Service
● Invalid Command Sequence
● Single Bit Errors

6.1.1.1.1 The runaway task shall create a task in the
cFS that does not terminate

TESTED by
Runaway Task Injection

6.1.1.1.2 The memory leak shall allocate memory on
the cFS without deallocating

6.1.1.1.3 The denial of service shall spam messages
to the software bus

TESTED by
DOS Injection

6.1.1.1.4 The invalid command sequence shall send
a sequence of commands out of order

6.1.1.1.5 The single bit error shall flip a bit in the
rewritable memory of the cFS

TESTED by
Single Bit Error Injection

6.1.1.2 The anomaly injection shall have an
automated process that randomly injects an
anomaly at random times

6.1.1.2.1 The automated process shall allow the user
to turn it on and off

6.1.1.3 The anomaly injection shall allow the user
to inject their anomaly of choice

TESTED by
Runaway Task Injection
DOS Injection
Single Bit Error Injection

20

6.1.2 Onboard Anomaly Detection
(OAD)

Requirement No. Requirement Desciption Verification and
Validation Method

6.1.2.1 The OAD shall be an automated process
that periodically check the state of the
satellite.

6.1.2.2 The OAD shall detect the following
anomalies:

● Runaway Task
● Memory Leak
● Single Bit Errors

6.1.2.2.1 The runaway task detection shall acquire
the CPU data from the cFS

TESTED by
Runaway Task Detection

6.1.2.2.1.1 The runaway task detection shall detect
anomalous behavior in the CPU data

TESTED by
Runaway Task Detection

6.1.2.2.2 The memory leak detection shall acquire
the memory state from the cFS

6.1.2.2.2.1 The memory leak detection shall detect
anomalous behaviors in the memory state

6.1.2.2.3 The single bit error shall acquire the
memory data from the cFS

6.1.2.2.3.1 The single bit error shall detect anomalous
behaviors in the memory data

6.1.2.2 The OAD shall create an event log once an
anomaly has been detected

TESTED by
Runaway Task Detection

6.1.2.3 The OAD shall create a notification once
an anomaly has been detected

TESTED by
Runaway Task Detection

6.1.2.4 The OAD shall send the event log and
notification next contact with ground

TESTED by
Runaway Task Detection

21

6.1.3 Ground Base Anomaly Detection
(GBAD)

Requirement No. Requirement Desciption Verification and
Validation Method

6.1.3.1 The GBAD shall be an automated process
that will constantly check the state of the
telemetry data.

6.1.3.1 The GBAD shall detect the following
anomalies:

● Denial of Service
● Invalid Command Sequences

6.1.3.1.1 The denial of service detection shall
acquire the connection time between
COSMOS and the cFS

TESTED by
DOS Detection

6.1.3.1.1.1 The denial of service detection shall detect
anomalous behaviors in the connection
time

TESTED by
DOS Detection

6.1.3.1.2 The invalid command sequence detection
shall acquire the command sequence being
sent up to the cFS

6.1.3.1.2.1 The invalid command sequence detection
shall detect anomalous behaviors in the
command sequence

6.1.3.2 The GBAD shall create an event log once
an anomaly has been detected

TESTED by
DOS Detection

6.1.3.3 The GBAD shall create a notification once
an anomaly has been detected

TESTED by
DOS Detection

6.1.3.4 The GBAD shall send an event log and
notification back to ground

TESTED by
DOS Detection

22

7. Glossary
API - Application Programming Interface
cFE - Core Flight Executive
cFS - Core Flight System
GBAD - Ground Base Anomaly Detection
OAD - Onboard Anomaly Detection
OSK - OpenSatKit
SAID - Satellite Anomaly Injection and Detection
SB - Software Bus

23

8. References
SRS: https://drive.google.com/file/d/1_a6FILgQFL8icp_bcoqSj2wQlJuggsUW/view

Core Flight System (cFS): https://cfs.gsfc.nasa.gov/

COSMOS: https://cosmosc2.com/

Open Sat Kit (OSK): https://github.com/OpenSatKit/OpenSatKit/wiki

https://cfs.gsfc.nasa.gov/
https://github.com/OpenSatKit/OpenSatKit/wiki

