
Software Requirements
Specification

for

Satellite Anomaly Injection &
Detection Testbed

Version 1.0 Approved

Prepared by Alex Huang, Jerome Pineda, Samantha Simpson

CSULA / The Aerospace Corporation

December 7, 2020

Table of Contents
Table of Contents... 1
Revision History... 2

1. Introduction.. 3
1.1. Purpose... 3
1.2. Intended Audience and Reading Suggestions.. 3
1.3. Product Scope.. 3
1.4. Definitions, Acronyms, and Abbreviations .. 4
1.5. References.. 4

2. Overall Description.. 5
2.1. System Analysis…... 5
2.2. Product Perspective... 5
2.3. Product Functions... 6
2.4. User Classes and Characteristics.. 7
2.5. Operating Environment.. 7
2.6. Design and Implementation Constraints.. 7
2.7. User Documentation.. 7
2.8. Assumptions and Dependencies.. 7
2.9. Apportioning of Requirements.. 8

3. External Interface Requirements... 9
3.1. User Interfaces... 9
3.2. Hardware Interfaces... 9
3.3. Software Interfaces.. 9
3.4. Communications Interfaces... 10

4. Requirements Specification... 11
4.1. Functional Requirements... 11
4.2. External Interface Requirements... 15
4.3. Logical Database Requirements.. 15
4.4. Design Constraints... 15

5. Other Nonfunctional Requirements... 16
5.1. Safety Requirements.. 16
5.2. Security Requirements... 16
5.3. Software Quality Attributes... 16
5.4. Business Rules... 16

6. Legal and Ethical Considerations.….. 17
Appendix A: Glossary.. 18
Appendix B: Analysis Models... 19

1

Revision History
Name Date Reason for Changes Version

Requirements
Committee

9/8/2020 Initial Document: delivery of software
requirements

Draft #1

Requirements
Committee

9/28/2020 Revisions Post Introduction Meeting Draft #2

Requirements
Committee

10/5/2020 Revisions to be made post feedback from
sharing with the entire team

Draft #3

Requirements
Committee

10/21/2020 Revisions made post general team meeting
on 10/16

Draft #4

Requirements
Committee

10/23/2020 Revisions made post feedback on 10/23 Draft #5

Requirements
Committee

10/27/2020 Revisions made post feedback on 10/27 Draft #6

Requirements
Committee

11/14/2020 Revisions made post feedback on 11/14 Draft #7

Requirements
Committee

12/3/2020 Revisions made post feedback on 12/3 Version 1.0

2

1. Introduction

1.1 Purpose
The purpose of this document is to supply information on the anomaly injection and detection
requirements. Also, providing information on simulation tools allows the users to configure and
deploy platforms used in a real-time environment to simulate anomalies.

1.2 Intended Audience and Reading Suggestions
This Software Requirements document is intentional for:

● Software Developers can review the project's capabilities and more easily understand
where their efforts should target to improve or add more features to it.

● Project testers can use this document as a base for their testing strategy as some bugs are
easier to find using a requirements document. This way of testing becomes more
methodically organized.

● Project reviewers can use this document as a base for analyzing and critiquing design
plans.

● Project managers can use this document to help the project team plan how they should
implement its quality control.

● End-users of this application who wish to read about what this project can do.
● End-users can use this document to read the capabilities of the application.

1.3 Product Scope
The scope of this document includes the following:

● The software products are Anomaly Injection, Onboard Anomaly Detection, and
Ground Base Anomaly Detection. These products are further explained in 1.3.1, 1.3.2
and 1.3.3

● All the systems will utilize the Open Sat Kit environment. The software will use the
simulated telemetry data and satellite data to inject and detect anomalies.

1.3.1 Anomaly Injection
Allows the user to inject an anomaly into the cFS. The anomaly injection will modify
data that is onboard the satellite. It will also be able to interfere with the software bus.

1.3.2 Onboard Anomaly Detection
Automated software able to detect anomalies within the cFS. The onboard anomaly
detection will make comparisons with the satellite data and nominal data

3

1.3.3 Ground Base Anomaly Detection
Automated software to be able to detect anomalies found in the telemetry data. The
ground base anomaly detection will make comparisons with the telemetry data and
nominal data

1.4 Definitions, Acronyms, and Abbreviations
1.4.1 Acronyms/Abbreviations

Acronyms/Abbreviations Definition
API Application Programming Interface

Attitude Det/Ctrl Attitude Determination and Control Apps
cFE Core Flight Executive
cFS Core Flight System
DS Data Storage
ES Executive Services

EVS Event Services
FM File Manager

FWS Flight Software
GBAD Ground Base Anomaly Detection

GUI Graphical User Interface
HK House Keeping
LC Limit Checker

OAD Onboard Anomaly Detection
OSK OpenSatKit
SB Software Bus Services
SC Stored Command

SimSat Simple Satellite
TBL Table Services
TFTP Trivial File Transfer Protocol
TIME Time Services

1.5 References
1.5.1 Aerospace detailed project proposal
1.5.2 OSK User’s Guide

4

https://drive.google.com/file/d/1Bsmj5JhZXmVFw8FZ_krXCCBEXYAZWvZP/view
https://github.com/OpenSatKit/OpenSatKit/blob/master/docs/OSK-Users-Guide.pdf

2. Overall Description
2.1 System Analysis
Main goals of this project:

● Inject anomalous behavior/data
● Use modern data analysis techniques/libraries/frameworks to detect those anomalies

where traditional checks would fail

Major technical hurdles of this project:
● Detection of the anomaly either onboard the satellite and on the ground. The anomaly

detection made onboard the satellite processor has limited memory and CPU cycles
running on a single thread. The anomaly detection made for the ground has reduced
response times due to data payload size when downlinking, as well as reduced
opportunities to respond to the anomalies due to scheduling

2.2 Product Perspective
2.2.1 Anomaly Injection

The anomaly injection will be integrated into the cFS. The anomaly injection will
make use of the cFE libraries to be able to connect with the other applications
located on the cFS.

2.2.2 Onboard Anomaly Detection
The onboard anomaly detection will be integrated into the cFS. The onboard
anomaly detection will make use of the cFE libraries in order to connect with the
other applications located on cFS.

2.2.3 Ground Base Anomaly Detection
The ground base anomaly detection will be integrated into COSMOS. The ground
base anomaly detection will make use of the cFE libraries to connect with
COSMOS and the cFS.

5

Figure 2-1 Product Data Flow Diagram

2.3 Product Functions
2.3.1 Anomaly Injection

● Injects the following anomalies:
o Runaway task - Eats up the CPU of the cFS
o Memory leak - Eats up the memory of the cFS
o Denial of service - Occupies the bandwidth of the OSK softwarebus
o Invalid command sequences - Affects the execution of commands in the cFS
o Single bit errors - Affects the memory data of the cFS

● The injection software will allow the user to input their anomaly of choice
● The injection software will have an automated process that will wait until a period of

time has passed before injecting one of the anomalies at random.
o The user can turn this feature on and off.

6

2.3.2 Onboard Anomaly Detection
Automated detection software checks for anomalies. The anomalies being checked for are
runaway tasks, memory leak, and single bit errors. Once an anomaly has been detected it creates
and event log and notification of the anomaly. An event log and notification are queued and
downlinked to the ground system next contact.

2.3.3 Ground Base Anomaly Detection
Automated detection software checks for anomalies from the telemetry data. The anomalies
being checked for is the denial of service and invalid command sequences. Once an anomaly has
been detected it creates an event log and a notification of the anomaly. The event log and
notification are sent to ground.

Note: We understand Aerospace’s interest in the development of a broad anomaly detection
program that can use modern data analysis techniques, such as time series analyses and
machine learning. However due to the team’s limited knowledge of such techniques
implementation is out of scope.

2.4 User Classes and Characteristics
The primary demographic for this software is Aerospace engineers looking into anomaly
injections and detection software. The anomaly injection can be used for all simulation purposes.
The anomaly detection can be studied and used for the actual satellites that will be launched.

2.5 Operating Environment
The software will run on the Ubuntu 18.04 LTS operating system, as OSK currently is supported
on that specific Linux system. It is expected to have OSK, cFS, COSMOS, and 42 installed to
make use of the desired open source software for development.

2.6 Design and Implementation Constraints
● On board satellite constraints of limited memory and CPU cycles running on a single

thread
● Ground communication limitation of reduced response times and payload limitations

2.7 User Documentation
● Anomaly Injection User Manual in pdf form
● Anomaly Detection User Manual in pdf form

2.8 Assumptions and Dependencies
● Ubuntu Operating System (18.04 LTS)

7

2.9 Apportioning of Requirements
TBD

8

3. External Interface Requirements
3.1 User Interfaces
TBD

3.2 Hardware Interfaces
Not Applicable

3.3 Software Interfaces
Open Sat Kit (OSK) – Core Flight System Starter Kit
Open Sat Kit combines three powerful open source tools that are currently used in real missions
today: Ball Aerospace Corporation’s COSMOS ground system, NASA Goddard’s core Flight
System(cFS) flight software, and NASA Goddard’s 42 satellite simulator. See the documentation
for OSK in its GitHub Wiki.

Core Flight System – Flight Software
OSK provides a complete desktop solution for learning how to use NASA's open source flight
software (FSW) platform called the core Flight System (cFS). The cFS is a reusable FSW
architecture that provides a portable and extendable platform with a product line deployment
model. The cFS has significant flight heritage, provides a complete set of command and data
handling functions required by most spacecraft, and is reliable. A virtual environment with OSK
set up will serve as the development environment for learning about flight and ground system
communications as well as providing a platform for developing anomalies to be injected into the
simulation. OSK comes with the cFS preconfigured for a fictitious satellite called SimpleSat
(SimSat).

42 – Spacecraft Simulator
In addition to cFS, OSK uses NASA Goddard’s 42 dynamic satellite simulator for simulated
hardware command and telemetry. 42 is a comprehensive general-purpose simulation of
spacecraft attitude and orbit dynamics. Its primary purpose is to support design and validation of
attitude control systems. 42 accurately models multi-body spacecraft attitude dynamics as well as
modelling environments from low Earth orbit to throughout the solar system. It also features
visualization of spacecraft attitude.

COSMOS – Ground System
OSK implements extensive COSMOS configurations and customizations so COSMOS can serve
as the primary OSK user interface. COSMOS is a suite of applications that can be used to
communicate with the satellite, monitor its performance and health, and display its data. The
systems that COSMOS interfaces with can be anything from test equipment (power supplies,
oscilloscopes, switched power strips, UPS devices, etc.), to development boards (Arduinos,
Raspberry Pi, Beaglebone, etc.), to satellites.

9

https://cosmosrb.com/
https://cfs.gsfc.nasa.gov/
https://cfs.gsfc.nasa.gov/
https://github.com/OpenSatKit/OpenSatKit/wiki

COSMOS implements a client server architecture with the Command and Telemetry Server and
the various other tools typically acting as clients to retrieve data. The Command and Telemetry
Server connects to the targets and sends commands and receives telemetry (status data) from
them. Targets are the items you are trying to control or get status from.

3.4 Communications Interfaces
TBD
(We are aware that this is intended to be a multiple system project, but we don’t as of yet know
how to go about this.)

10

4. Requirements Specification
4.1 Functional Requirements

Requirement No. Requirement Description
4.1.1 Anomaly Injection

4.1.1.1 The anomaly injection shall inject the following anomalies
● Runaway Tasks
● Memory leaks
● Denial of Service
● Invalid Command Sequence
● Single Bit Errors

Rationale: These are the anomalies that was proposed to be injected
4.1.1.1.1 The runaway task shall create a task in the cFS that does not terminate

Rationale: A runaway task is when a task does not terminate
appropriately on the satellite. To replicate the anomaly, the runaway
task will create a task that never completes on the cFS

4.1.1.1.2 The memory leak shall allocate memory on the cFS without
deallocating

Rationale: Memory Leak is when memory is allocated but is not
appropriately deallocated on the satellite. To replicate the anomaly,
memory will be allocated without deallocating on the cFS.

4.1.1.1.3 The denial of service shall spam messages to the software bus

Rationale: Denial of service overwhelms the network of communication
by spamming data packets into the network. In the OSK environment,
the software bus is the network, and the data packets are called
messages. To replicate the anomaly messages will be spammed into the
software bus

4.1.1.1.4 The invalid command sequence shall send a sequence of commands out
of order

Rationale: Invalid Command Sequence is a sequence of commands that
is sent out of order. To replicate the anomaly a sequence of commands
will be sent out of order

11

4.1.1.1.5 The single bit error shall flip a bit in the rewritable memory of the cFS

Rationale: A single bit error flips a bit of memory inside the satellite.
Realistically the bit flip can occur anywhere in the memory, potentially
crashing the whole system. Due to that concern, the injection will be
targeting the rewritable memory of the cFS

4.1.1.2 The anomaly injection shall have an automated process that randomly
injects an anomaly at random times

Rationale: Anomalies in real life occur at any point in time. Creating
an automated injection process will be able to replicate a real-life
scenario of these anomalies.

4.1.1.2.1 The automated process shall allow the user to turn it on and off

Rationale: For testing purposes, the user will need control when the
automated process is turned on or off.

4.1.1.3 The anomaly injection shall allow the user to inject their anomaly of
choice

Rationale: For testing purposes the user will need control of what
anomaly is to be injected.

4.1.2 Onboard Anomaly Detection (OAD)

4.1.2.1 The OAD shall be an automated process that periodically check the
state of the satellite.

Rationale: Due to the onboard CPU’s limitations, the OAD will need to
periodically check for anomalies instead of constantly checking.

4.1.2.2 The OAD shall detect the following anomalies:
● Runaway Task
● Memory Leak
● Single Bit Errors

Rationale: Runaway Task, Memory Leak, and Single Bit Errors are
anomalies found on the satellite themselves. Onboard detection will
streamline the detection process.

4.1.2.2.1 The runaway task detection shall acquire the CPU data from the cFS

Rationale: Runaway Task eats up the CPU resources of the satellite.
The detection will need the CPU to determine if there is an anomaly.

12

4.1.2.2.1.1 The runaway task detection shall detect anomalous behavior in the CPU
data

Note: The detection process is still TBD. More work and research are
needed to state what “anomalous behaviors” are.

4.1.2.2.2 The memory leak detection shall acquire the memory state from the
cFS

Rationale: Memory Leak eats up the memory of the cFS. The detection
will need the memory state to determine if there is an anomaly

4.1.2.2.2.1 The memory leak detection shall detect anomalous behaviors in the
memory state

Note: The detection process is still TBD. More work and research are
needed to state what “anomalous behaviors” are.

4.1.2.2.3 The single bit error shall acquire the memory data from the cFS

Rationale: Single Bit Error will happen within the memory of the cFS.
The memory data is needed to determine if there is an anomaly

4.1.2.2.3.1 The single bit error shall detect anomalous behaviors in the memory
data

Note: The detection process is still TBD. More work and research are
needed to state what “anomalous behaviors” are.

4.1.2.2 The OAD shall create an event log once an anomaly has been detected

Rationale: The anomaly needs to be recorded. An event log will create
that recording

4.1.2.3 The OAD shall create a notification once an anomaly has been detected

Rationale: The user needs to be notified of the anomaly. The
notification will notify the user.

4.1.2.4 The OAD shall send the event log and notification next contact with
ground

Rationale: The ground users will need to know what happened on the
satellite. Therefore, the notification and event log will be required to be
sent back.

4.1.3 Ground Base Anomaly Detection (GBAD)

13

4.1.3.1 The GBAD shall be an automated process that will constantly check the
state of the telemetry data.

Rationale: Due to unlimited resources provided on the ground, the
automated process can run constantly

4.1.3.1 The GBAD shall detect the following anomalies:
● Denial of Service
● Invalid Command Sequences

Rationale: Denial of Service is an anomaly that slows down the
connection time between the satellite and the ground. Since the users
are on the ground, detection should be there as well. Invalid Command
Sequences are commands that are sent out of order. Detecting this
anomaly on the ground would prevent these commands from being sent
up in the first place.

4.1.3.1.1 The denial of service detection shall acquire the connection time
between COSMOS and the cFS

Rationale: Denial of Service slows down the connection between
satellite, ground, and vice versa. COSMOS and cFS are ground and
cFS, respectively. The connection time is needed to determine if there is
an anomaly.

4.1.3.1.1.1 The denial of service detection shall detect anomalous behaviors in the
connection time

Note: The detection process is still TBD. More work and research are
needed to state what “anomalous behaviors” are.

4.1.3.1.2 The invalid command sequence detection shall acquire the command
sequence being sent up to the cFS

Rationale: Invalid Command Sequence is a series of commands that are
sent out of order. Inspection on these commands would determine if
there is an anomaly

4.1.3.1.2.1 The invalid command sequence detection shall detect anomalous
behaviors in the command sequence

Note: The detection process is still TBD. More work and research are
needed to state what “anomalous behaviors” are.

4.1.3.2 The GBAD shall create an event log once an anomaly has been
detected

14

Rationale: The anomaly needs to be recorded. An event log will create
that recording

4.1.3.3 The GBAD shall create a notification once an anomaly has been
detected

Rationale: The user needs to be notified of the anomaly. The
notification will notify the user.

4.1.3.4 The GBAD shall send an event log and notification back to ground

Rationale: The ground users will need to know if there was an anomaly.
Therefore, the notification and event log will be required to be sent to
the ground users.

4.2 External Interface Requirements
Not Applicable

4.3 Logical Database Requirements
TBD (We currently don’t know if we will end up needing one)

4.4 Design Constraints
Design No. Design Description
1. Onboard Anomaly Detection

1.1 Constrain of the limited CPU cycles and processor running on a single thread.

15

5. Other Nonfunctional Requirements
5.1 Safety Requirements
The most significant safety issue in mind is ensuring software accepts only valid templates for
anomaly simulation, guaranteeing a way to cease software operation safely in case of erroneous
use.
Ensure simulation of certain anomalies, such as runaway tasks, do not cause issues on the
platform where software is hosted.

5.2 Security Requirements
Externally, the software intends to be open-source software and therefore requires little to no
actual security. However, within the simulation desired, some form of authentication system such
as a login system should be applied to facilitate “secure” information transfer between the
simulation satellite and its ground side base and mitigate unauthorized access. Any other security
requirements are TBD, as vulnerabilities are detected.

5.3 Software Quality Attributes
Most significant issue: software must run on Ubuntu 18.04 LTS operating system; key software
components from OSK only support that OS. Hardware limitations should be exceptionally low,
allowing for installation and operation on most platforms to support Ubuntu.

5.4 Business Rules
Once operational, the satellite simulation should be left mainly to run normally. The only time it
does not run normally is when an anomaly has been injected to test for the detection capabilities.
The ground base should be the primary user interface to work with the satellite within the context
of the simulation itself.

16

6. Legal and Ethical Considerations
There are legal and ethical concerns that pertain to this project—the most significant

being the anomaly injection tool being created. As stated by Aerospace, the anomaly injection
tool will be breaking regulatory protocols that will lead to some indifference in the system. This
change goes against the ACM Code of Ethics Section 1.2: Avoid Harm. We are creating the
potential of unjustified property damage, so it will be addressed what kind of damages our
program entails, how the developers and sponsors responded to the damages, and how adequate
the responses are.

The anomaly injection tool has five possible anomaly injections. Those are the runaway
task, memory leak, denial of service, invalid command sequences, and single bit errors. These
anomalies all break the protocol and cripples the effectiveness of the satellite. Memory leaks and
runaway tasks cripples the systems overall performance eating up the CPU and memory of the
satellite respectively. Single bit errors change any bit of memory in the satellite, which could
cause significant damages, including crashing. Denial of service causes disruptions in the data
flow. Invalid command sequences disrupt command execution.

Safeguards will be implemented to address the issues. First of all, the anomalies are only
injected by the user's knowledge. The user has control of when to inject these anomalies. There
is also a development of an automated system to inject these anomalies as well. The user also
controls this automated system in terms of an on and off switch. Any abnormality injected will
be addressed to the user immediately. Second of all, a failsafe method will revert the satellite to
its original functioning state, including deleting the previously injected anomalies. Third of all,
the anomaly single bit error has its protocol. The protocol is only to target the rewritable memory
of the satellite, therefore mitigating the potential crashes.

The efforts the developers are taking to address these issues are adequate. Letting the user
know what anomalies have been injected at least states what kind of potential damage they are
about to do. And addressing the single-bit error to be assigned to rewritable memory allows for
ease of mind to not crash the system. The failsafe of reverting the satellite into its original state
mitigates all damages done towards the satellite. These are adequate attempts to combat the
potential harms. However, there can be improvements. The biggest one is to have some protocol
for all anomalies, not just single-bit errors.

The ethical issue of this project is breaking the ACM Code of Ethics Section 1.2: Avoid
Harm. The potential unjustified damages being done are the anomalies that damage the system
integrity. These damages were addressed in user knowledge and consent, creating a failsafe, and
managing the single-bit error. The responses to these issues are adequate, but there is room for
improvement. Given the heavy emphasis on anomaly injection, it is essential to note the
development of anomaly detection. There cannot be a detection tool without an injection tool. In
the long run, we can address and prevent damages in the future by doing damages now. That is
the primary goal of the anomaly detection tool upholding the ACM Code of Ethics Section 1.2:
Avoid Harm.

17

Appendix A: Glossary
TBD

18

Appendix B: Analysis Models
Internal problems Manifestations Plausible causes Recognition

strategies
Denial of Service The time for

connection between
satellite to ground or
vice versa, is slower
than scheduled

Jamming from an
outside source

Checking scheduled
time for connection
vs current time of
connection

Invalid command
sequences

The satellite not
executing the
appropriate behaviors

Ground system not
sending the correct
order of commands.

Attacker modifying
the data to input an
invalid sequence

Checking command
sequence with a valid
command sequence

Runaway tasks The computer found
on the satellite starts
to run slowly

A process still
existing after being
cancelled

Checking the CPU
performance of the
satellite

Memory leak The memory of the
satellite is being eaten
up

Memory has not been
deallocated
appropriately

Checking the
memory availability

Single Bit Error Discrepancies in the
memory data

Solar radiation
flipped the bit

Compare old state of
memory to the
current state of
memory and check
for changes

19

