Software Design Document

for

Open-Source Real-Time Video Player

Version 1 approved

Prepared by Brian Hernandez, Mirasol Davila, Wendy Joya, Ashley Jetty, Israel Lopez-Diaz, Tim Ellis, Rafael Mendoza, Jeffrey Luu

AT&T

December 6, 2020

Table of Contents

Table of Contents			02	
Revision History				
1.	Introduct	Introduction		
	1.1.	Purpose	06	
	1.2.	Document Conventions	06	
	1.3.	Intended Audience and Reading Suggestions	06	
	1.4.	System Overview	06	
2.	Design Co	onsiderations	07	
	2.1.	Assumptions and dependencies	07	
	2.2.	General Constraints	07	
	2.3.	Goals and Guidelines	08	
	2.4.	Development Methods	08	
3.	Architect	ural Strategies	09	
4.	 System Architecture 		10	
	4.1.		10	
	4.2.		10	
5. Policies and Tactics			11	
	5.1.	Specific Products Used	11	
	5.2.	Requirements traceability	11	
	5.3.	Testing the software	11	
	5.4.	Engineering trade-offs	11	
	5.5.	Guidelines and conventions	11	

	5.6.	Protoco	bls	11
	5.7.	Maintai	ining the software	11
	5.8.	Interfac	ces	11
	5.9.	System	's deliverables	11
	5.10.	Abstra	action	11
6.	Detailed	System D	esign	12
	6.x	Name o	of Module	12
	6.x.1	Respons	sibilities	12
	6.x.2	Constrai	ints	12
	6.x.3	Composition		
	6.x.4	Uses/Int	teractions	12
	6.x.5	Resourc	es	12
	6.x.6	Interfac	e/Exports	12
7.	Detailed	Lower lev	vel Component Design	14
	7.x	Name of C	Class or File	14
	7.x.1	Classific	ation	14
	7.x.2	7.x.2 Processing Narrative(PSPEC)		14
	7.x.3 Interface Description		14	
	7.x.4	7.x.4 Processing Detail		
		7.x.4.1	Design Class Hierarchy	14
		7.x.4.2	Restrictions/Limitations	14
		7.x.4.3	Performance Issues	14
		7.x.4.4	Design Constraints	14
		7.x.4.5	Processing Detail For Each Operation	14

8. User Interface

	8.1.	Overview of User Interface	14
	8.2.	Screen Frameworks or Images	14
	8.3.	User Interface Flow Model	14
9.	Database Design.		14
10.	0. Requirements Validation and Verification1		
11.	.1. Glossary		
12.	2. References		

Revision History

Name	Date	Reason For Changes	Version
First Draft	12-06-2020		1

1. Introduction

1.1 Purpose

The Software Design Documentation (SDD) dives into our projects' software documentation. Where it will expand the knowledge of whomever reads this document to serve its purpose to help understand the descriptions in our documentation. We will illustrate the purpose, Level 0 DFD, Level 1 DFD and our user interface.

1.2 Document Conventions

All text for the document will be single-spaced, size 12pt, and Calibri font; however, the headers will be size 24pt, Calibri font, and bolded. Bullet Points are used to list or outline specifications for ease of readability and comprehension.

1.3 Intended Audience and Reading Suggestions

This documentation is intended for developers and users. It's broken down into its documentational components where it will make it easier to understand step-by-step our project. This document contains the overall idea of how our project works as a whole. A suggestion for users will be to look into the sections of understanding the purpose, system overview, user interface and acronyms to better understand the project.

1.4 System Overview

Our software system is an open-source web-app available on GitHub. Our software allows users to stream videos and they provide you with real-time video playback for the purpose of research and analysis. Our software provides useful information through many metrics, such as Video Start Time, Rebuffering Ratio, Rebuffering Duration, video resolution, and many more. Other important functionality includes the ability to upload Network Profiles to throttle the network speeds and simulate other network conditions for the purpose of testing. On our software, we also have the functionality to store all the metric information in an excel file, which downloads after you are done playing your video. All these features are for the purpose of research for companies that want to test video playback and make improvements to their video streaming services.

2. Design Considerations

In our proposal, AT&T illustrated four different video players where we analyzed and researched. After the extensive research we were narrowed down to two video players. Before starting any design of the project we began by creating a simple web page and did tests considering the different KPI's. This is where we resolved that the two video players selected were the right choice because they performed better than the rest. This is because sample videos used in the video player were originally HLS supported making HLS.js and Shaka player the highest from all four video players. In Network throttling we had to look into different libraries because Clapper-Stats was its own player. We finally ended up finding a library that helped us ease the process to analyze our throttling data.

2.1 Assumptions and Dependencies

Requirements:

- Broadband
 - WIFI Speed
 - IP Address

The main concern would be broadband because without internet connection the webpage wouldn't be able to display the html file. It's speed would affect the buffering ratio and video quality as well.

2.2 General Constraints

General constraints are placed for the protection of the software and users.

- Repos were provided by AT&T
- IP Addresses were granted access with the help of the AT&T team
- Data Constraints
- HLS Videos
 - Video players are HLS and DASH supported
 - HLS.js player is only HLS video supported
- Security Considerations
 - Data collected should only be used for testing purposes

2.3 Goals and Guidelines

Goals:

- Create a program where there's accuracy in our data.
- Video player with high quality resolution
- Real-Time network throttling

Guidelines:

- 1. The software is needing to be completed by the end of Spring 2021
- 2. Full functionalities of the KPI metrics and network throttling
- 3. Hosting of both web pages

2.4 Development Methods

Our approach for this software is to look into the repos given by the AT&T team and start outsourcing in finding different libraries applicable to this project. After, start improving in the libraries found by integrating them into the web page. Weekly testing of the KPI metrics, if one of the metrics does not apply to the proposal then it will be scratched off our list of KPI metrics. Also, looking into clapper-stats for network throttling but it was its own player so looked into different libraries where eventually we were able to throttle the network.

3. Architectural Strategies

The web application was done by using the IDE of visual studio. The language in which it was coded was in JavaScript, html and CSS. We haven't used a database because it was all placed as part of the program. Some libraries used areClappr-stats, HLS.js, Mux.js, Chart.js and MyExcel.

4. System Architecture

5. Policies and Tactics

5.1 Choice of which specific products used

IDE

• Visual Studio Code

Programming Language

- JavaScript (An interpreted language, not a compiled language)
- HTML
- CSS

Database

• TBD

Libraries

- Clappr-stats
- HLS.js
- Mux.js
- Chart.js
- MyExcel

5.2 Plans for ensuring requirements traceability

TBD

5.3 Plans for testing the software

• Custom Business Practices

5.4 Plans for maintaining the software

- Once the project is completed on Spring 2020, this software will be available for the use of the AT&T team
- Continue being a software to test their programs and videos

6. Detailed System Design

The following are the components to the System Architecture.

hls.js

- Hls.js is responsible for HTTP Live Streaming Client. When the browser has built-in HLS support an HLS manifest is provided directly to the video element through the source property.
- Relies on HTML5 video and MediaSource Extensions for playback.
- Only compatible with browsers supporting MediaSource (MSE) API with 'video/mp4' mime types inputs.
- hls.js does not need any player, it works directly on top of a standard HTML <video> element
- Instantiate a hls object to load the video src link to the hls objects load source method. Then attach the video element to the hls objects media method.

hls-demo.ls

- Where all hls functions reside.
- This file is called by hls.js to get the functions needed for playback.

Index.html

- The main file that runs the web application for hls.js.
- Added features are implemented in this html file.
- Integrates all JavaScript files that are used for the System Architecture.

ourmetrics.js

- Responsible for measuring all kpi metrics.
- Count How many times rebuffering occurs.
- Frequency How often does rebuffering occur.
- Duration How long does a rebuffer take.
- Ratio A percentage of how long the player rebuffered versus the overall playtime.

Chart.js

• Displays the bitrate value per second based on the video src.

MyBitrateChart.js

• Our bitrate chart keeps track of how the video is performing when it's loaded.

NetworkProfiles.js

- Set up properties for the line chart to display bits/sec to the user.
- Properties such as time in seconds, bit/sec, and different network categories such as: WiFi Cellular, and Stream Saver.
- Executes regardless if a user selects a network preset.
- Dynamically displays the changes of bit/sec when the network is changed.

MyExcel.js

• A required JavaScript library to export from a web application data into Excel Format.

RecordKeeper.js

- Writes the recorded data to an excel sheet so the client can view themselves for analyzing.
- Writing four dynamic values that consist of Playtime, Rebuffering Ratio, Estimated Bandwidth, and Bitrate Mean.

FileSaver.js

- FileSaver.js is the solution to saving files on the client-side.
- Perfect to generate files and for saving sensitive information.

Jszip.js

• A JavaScript class for generating and reading zip files.

7. Detailed Lower level Component Design

TBD

8. Database Design

TBD

9. User Interface

9.1 Chrome/Safari Overview of User Interface

When the user opens the application on a Chrome or Safari browser, they will see the entirety of the OSRVP and its UI components. Visually going from top to bottom and left to right, the user will first see the Video Source Information which will provide title and source information of the video selected. Beneath the Video Source Information is the Video Player Screen which is the viewer that plays the video and the KPI Metric Stats that are values of the real time metrics of the video being played. Underneath the Video Player Screen is the Bandwidth and Record Metric Menu. These allow the user to select a Bandwidth Network Throttle Value and gives the user the option of recording KPI Metric Stats to an excel sheet based on playtime. Next comes the Bit Ratio and Network Profile Charts which gives the user real time charted value changes of both the video's bit rate and the bandwidth value it's using. Lastly our HLS Playback Stats and HLS Quality Level menu allows for the user to view the libraries playback values of the video and also change the level of bit rate quality during playtime.

9.2 Screen Frameworks or Images

- I. General Overview
- II. Video Source Information
- III. Video Player Screen
- IV. KPI Metric Stats
- V. Bandwidth and Record Metric Menu
- VI. Bit Ratio and Network Profile Charts
- VII. HLS Playback Stats
- VIII. HLS Quality Level Menu

II.

I.

hls.js

III.

Current Time: 47.953038s Duration: 301 Watched Percentage: 15.9312% Initial Startup Time: 0.9662 Video Start Time: 340.0842 Video Resolution: 360x640 Buffer Count: 0 Buffer Size: 54.012292 (0.083416s~54.095708s) Buffer Duration: 0.9662 seconds Total Rebuffer Time: 0.0000 seconds Rebuffer Ratio: 0.0000% Play Time: 49.0140 seconds Pause Count: 1 Total Pause Time: 340.0842 seconds Estimated Frames Per Second: 24 Total Decoded Frames: 980 Dropped Frames: 29 Estimated Bandwidth: 7Mbps Session Time: 407.6770 seconds Play Count: 3 Seek Count: 0 Volume: 0% Full Screen Count: 0 Error Count: 0 Level Changed Counter: 4 Current Level: 3 Level Change History: [Loading, 0, 1, 2] Current Bitrate: 326.82 kbps Bitrate Change History: [Loading, 145.18 kbps, 254.62 kbps, 438.91 kbps, 321.14 kbps, 304.39 kbps, 312.55 kbps, 306.04 kbps] Bitrate Mean: 294.35 kbps

V.

WIFI 🗸

Turn on Recording: Download XLSX

When a new bitrate is choosen the Quality will be dropped after the entire buffered section of the previous bandwidth is played. Keep in mind that as soon as you lower the bandwidth's bitrate the player will begin to downloading quicker.

IV.

VII.

VIII.

Status:

9.3 User Interface Flow Model

10. Requirements Validation and Verification

Guidelines for functionality that were stated on the SRS:

- 1. The software shall take a pre-set amount of videos to be chosen by the user.
- 2. The software shall perform analysis by recording its data.
- 3. The software may have an alternate button for alternating between HLS.js or Shaka video player.
- 4. The software may be able to play both HLS and DASH videos even if they aren't supported by the player.
- 5. The software shall display the different KPI metrics while running the web page.
- 6. The software shall display the buffering graphs when video is playing.
- 7. The software shall handle errors by returning invalid data.
- 8. The software should be able to maintain the video that was previously loaded even if the web browser was reloaded.

The components are satisfied by the methods described above. There are some requirements that we would like to be implemented in a future version of the software.

11. Glossary

ORVP	Open-Source Real-Time Video Player	
SRS	Software Requirement Specification	
DASH	Dynamic Adaptive Streaming	
HLS	HTTP Live Streaming	
KPI	Key Performance Indicator	
VST	Video Start Time	
VMAF	Video Multimethod Assessment Fusion	
Broadband	Telecommunication for Data transmission	
REPOS	Repositories	
JavaScript	An interpreting language not a compiler	

12. References

- ExoPlayer: https://github.com/rc728m/ExoPlayer.git
- Exoplayer Demo: https://exoplayer.dev/demo-application.html
- Shaka: https://github.com/rc728m/shaka-player.git
- HLS.js: https://github.com/rc728m/hls.js
- HLS Demo: https://hls-js-dev.netlify.app/demo
- Video.js: https://github.com/rc728m/video.js.git
- Clappr Stats: https://github.com/clappr/clappr-stats
- Mux.js: https://github.com/videojs/mux.js#readme
- Chart.js: chartjs.org
- MyExcel: https://github.com/jsegarra1971/MyExcel