
Software Design Document

for

Open-Source Real-Time Video Player

Version 1 approved

Prepared by Brian Hernandez, Mirasol Davila, Wendy Joya, Ashley Jetty, Israel

Lopez-Diaz, Tim Ellis, Rafael Mendoza, Jeffrey Luu

AT&T

December 6, 2020

Table of Contents

Table of Contents... 02

Revision History.. 05

1. Introduction... 06

 1.1. Purpose.. 06

 1.2. Document Conventions... 06

 1.3. Intended Audience and Reading Suggestions.. 06

 1.4. System Overview.. 06

2. Design Considerations... 07

 2.1. Assumptions and dependencies.. 07

 2.2. General Constraints... 07

 2.3. Goals and Guidelines... 08

 2.4. Development Methods.. 08

3. Architectural Strategies... 09

4. System Architecture.. 10

 4.1. ... 10

 4.2. ... 10

5. Policies and Tactics.. 11

 5.1. Specific Products Used... 11

 5.2. Requirements traceability.. 11

 5.3. Testing the software.. 11

 5.4. Engineering trade-offs... 11

 5.5. Guidelines and conventions.. 11

2

 5.6. Protocols.. 11

 5.7. Maintaining the software.. 11

 5.8. Interfaces... 11

 5.9. System's deliverables... 11

 5.10. Abstraction.. 11

6. Detailed System Design... 12

6.x Name of Module.. 12

6.x.1 Responsibilities... 12

6.x.2 Constraints.. 12

6.x.3 Composition... 12

6.x.4 Uses/Interactions.. 12

6.x.5 Resources.. 12

6.x.6 Interface/Exports.. 12

7. Detailed Lower level Component Design.. 14

7.x Name of Class or File... 14

7.x.1 Classification... 14

7.x.2 Processing Narrative(PSPEC)... 14

7.x.3 Interface Description.. 14

7.x.4 Processing Detail... 14

7.x.4.1 Design Class Hierarchy... 14

7.x.4.2 Restrictions/Limitations.. 14

7.x.4.3 Performance Issues... 14

7.x.4.4 Design Constraints... 14

7.x.4.5 Processing Detail For Each Operation.. 14

3

8. User Interface

 8.1. Overview of User Interface... 14

 8.2. Screen Frameworks or Images.. 14

 8.3. User Interface Flow Model.. 14

9. Database Design.. 14

10. Requirements Validation and Verification... 19

11. Glossary... 20

12. References... 21

4

Revision History

5

Name Date Reason For Changes Version

 First Draft 12-06-2020 1

1. Introduction

1.1 Purpose

The Software Design Documentation (SDD) dives into our projects’ software

documentation. Where it will expand the knowledge of whomever reads this document to

serve its purpose to help understand the descriptions in our documentation. We will illustrate

the purpose, Level 0 DFD, Level 1 DFD and our user interface.

1.2 Document Conventions

All text for the document will be single-spaced, size 12pt, and Calibri font; however, the

headers will be size 24pt, Calibri font, and bolded. Bullet Points are used to list or outline

specifications for ease of readability and comprehension.

1.3 Intended Audience and Reading Suggestions

This documentation is intended for developers and users. It’s broken down into its

documentational components where it will make it easier to understand step-by-step our

project. This document contains the overall idea of how our project works as a whole. A

suggestion for users will be to look into the sections of understanding the purpose, system

overview, user interface and acronyms to better understand the project.

1.4 System Overview

Our software system is an open-source web-app available on GitHub. Our software

allows users to stream videos and they provide you with real-time video playback for the

purpose of research and analysis. Our software provides useful information through many

metrics, such as Video Start Time, Rebuffering Ratio, Rebuffering Duration, video resolution,

and many more. Other important functionality includes the ability to upload Network Profiles

to throttle the network speeds and simulate other network conditions for the purpose of

testing. On our software, we also have the functionality to store all the metric information in an

excel file, which downloads after you are done playing your video. All these features are for the

purpose of research for companies that want to test video playback and make improvements to

their video streaming services.

6

2. Design Considerations

In our proposal, AT&T illustrated four different video players where we analyzed and

researched. After the extensive research we were narrowed down to two video players. Before

starting any design of the project we began by creating a simple web page and did tests

considering the different KPI’s. This is where we resolved that the two video players selected

were the right choice because they performed better than the rest. This is because sample

videos used in the video player were originally HLS supported making HLS.js and Shaka player

the highest from all four video players. In Network throttling we had to look into different

libraries because Clapper-Stats was its own player. We finally ended up finding a library that

helped us ease the process to analyze our throttling data.

2.1 Assumptions and Dependencies

Requirements:

● Broadband

○ WIFI Speed

○ IP Address

The main concern would be broadband because without internet connection the webpage

wouldn't be able to display the html file. It’s speed would affect the buffering ratio and video

quality as well.

2.2 General Constraints

General constraints are placed for the protection of the software and users.

● Repos were provided by AT&T

● IP Addresses were granted access with the help of the AT&T team

● Data Constraints

● HLS Videos

○ Video players are HLS and DASH supported

■ HLS.js player is only HLS video supported

● Security Considerations

○ Data collected should only be used for testing purposes

7

2.3 Goals and Guidelines
Goals:

● Create a program where there’s accuracy in our data.

● Video player with high quality resolution

● Real-Time network throttling

Guidelines:

1. The software is needing to be completed by the end of Spring 2021

2. Full functionalities of the KPI metrics and network throttling

3. Hosting of both web pages

2.4 Development Methods

Our approach for this software is to look into the repos given by the AT&T team and

start outsourcing in finding different libraries applicable to this project. After, start improving in

the libraries found by integrating them into the web page. Weekly testing of the KPI metrics, if

one of the metrics does not apply to the proposal then it will be scratched off our list of KPI

metrics. Also, looking into clapper-stats for network throttling but it was its own player so

looked into different libraries where eventually we were able to throttle the network.

8

3. Architectural Strategies

The web application was done by using the IDE of visual studio. The language in which it

was coded was in JavaScript, html and CSS. We haven’t used a database because it was all

placed as part of the program. Some libraries used areClappr-stats, HLS.js, Mux.js, Chart.js and

MyExcel.

9

4. System Architecture

10

5. Policies and Tactics

5.1 Choice of which specific products used

IDE

● Visual Studio Code

Programming Language

● JavaScript (An interpreted language, not a compiled language)

● HTML

● CSS

Database

● TBD

Libraries

● Clappr-stats

● HLS.js

● Mux.js

● Chart.js

● MyExcel

5.2 Plans for ensuring requirements traceability

 TBD

5.3 Plans for testing the software

● Custom Business Practices

5.4 Plans for maintaining the software

● Once the project is completed on Spring 2020, this software will be available for the use

of the AT&T team

● Continue being a software to test their programs and videos

11

6. Detailed System Design
The following are the components to the System Architecture.

hls.js

● Hls.js is responsible for HTTP Live Streaming Client. When the browser has built-in HLS

support an HLS manifest is provided directly to the video element through the source

property.

● Relies on HTML5 video and MediaSource Extensions for playback.

● Only compatible with browsers supporting MediaSource (MSE) API with ‘video/mp4’

mime types inputs.

● hls.js does not need any player, it works directly on top of a standard HTML <video>

element

● Instantiate a hls object to load the video src link to the hls objects load source method.

Then attach the video element to the hls objects media method.

hls-demo.ls

● Where all hls functions reside.

● This file is called by hls.js to get the functions needed for playback.

Index.html

● The main file that runs the web application for hls.js.

● Added features are implemented in this html file.

● Integrates all JavaScript files that are used for the System Architecture.

ourmetrics.js

● Responsible for measuring all kpi metrics.

● Count - How many times rebuffering occurs.

● Frequency - How often does rebuffering occur.

● Duration - How long does a rebuffer take.

● Ratio - A percentage of how long the player rebuffered versus the overall playtime.

Chart.js

● Displays the bitrate value per second based on the video src.

MyBitrateChart.js

12

● Our bitrate chart keeps track of how the video is performing when it’s loaded.

NetworkProfiles.js

● Set up properties for the line chart to display bits/sec to the user.

● Properties such as time in seconds, bit/sec, and different network categories such as:

WiFi Cellular, and Stream Saver.

● Executes regardless if a user selects a network preset.

● Dynamically displays the changes of bit/sec when the network is changed.

MyExcel.js

● A required JavaScript library to export from a web application data into Excel Format.

RecordKeeper.js

● Writes the recorded data to an excel sheet so the client can view themselves for analyzing.

● Writing four dynamic values that consist of Playtime, Rebuffering Ratio, Estimated Bandwidth,

and Bitrate Mean.

FileSaver.js

● FileSaver.js is the solution to saving files on the client-side.

● Perfect to generate files and for saving sensitive information.

Jszip.js

● A JavaScript class for generating and reading zip files.

13

7. Detailed Lower level Component Design

TBD

 ​8. Database Design

TBD

9. User Interface

9.1 Chrome/Safari Overview of User Interface

When the user opens the application on a Chrome or Safari browser, they will see the

entirety of the OSRVP and its UI components. Visually going from top to bottom and left to

right, the user will first see the Video Source Information which will provide title and source

information of the video selected. Beneath the Video Source Information is the Video Player

Screen which is the viewer that plays the video and the KPI Metric Stats that are values of the

real time metrics of the video being played. Underneath the Video Player Screen is the

Bandwidth and Record Metric Menu. These allow the user to select a Bandwidth Network

Throttle Value and gives the user the option of recording KPI Metric Stats to an excel sheet

based on playtime. Next comes the Bit Ratio and Network Profile Charts which gives the user

real time charted value changes of both the video's bit rate and the bandwidth value it's using.

Lastly our HLS Playback Stats and HLS Quality Level menu allows for the user to view the

libraries playback values of the video and also change the level of bit rate quality during

playtime.

9.2 Screen Frameworks or Images

I. General Overview

II. Video Source Information

III. Video Player Screen

IV. KPI Metric Stats

V. Bandwidth and Record Metric Menu

VI. Bit Ratio and Network Profile Charts

VII. HLS Playback Stats

VIII. HLS Quality Level Menu

14

15

I.

II.

III.

16

IV.

V.

9.3 User Interface Flow Model

17

VI.

VII.

VIII.

18

 ​10. Requirements Validation and Verification

 ​Guidelines for functionality that were stated on the SRS:

1. The software shall take a pre-set amount of videos to be chosen by the user.

2. The software shall perform analysis by recording its data.

3. The software may have an alternate button for alternating between HLS.js or Shaka

video player.

4. The software may be able to play both HLS and DASH videos even if they aren’t

supported by the player.

5. The software shall display the different KPI metrics while running the web page.

6. The software shall display the buffering graphs when video is playing.

7. The software shall handle errors by returning invalid data.

8. The software should be able to maintain the video that was previously loaded even if

the web browser was reloaded.

The components are satisfied by the methods described above. There are some requirements

that we would like to be implemented in a future version of the software.

19

11. Glossary

20

ORVP Open-Source Real-Time Video Player

SRS Software Requirement Specification

DASH Dynamic Adaptive Streaming

HLS HTTP Live Streaming

KPI Key Performance Indicator

VST Video Start Time

VMAF Video Multimethod Assessment Fusion

Broadband Telecommunication for Data transmission

REPOS Repositories

JavaScript An interpreting language not a compiler

12. References

● ExoPlayer: ​https://github.com/rc728m/ExoPlayer.git

● Exoplayer Demo: ​https://exoplayer.dev/demo-application.html

● Shaka: ​https://github.com/rc728m/shaka-player.git

● HLS.js: ​https://github.com/rc728m/hls.js

● HLS Demo: ​https://hls-js-dev.netlify.app/demo

● Video.js: ​https://github.com/rc728m/video.js.git

● Clappr Stats: ​https://github.com/clappr/clappr-stats

● Mux.js: ​https://github.com/videojs/mux.js#readme

● Chart.js: ​chartjs.org

● MyExcel: ​https://github.com/jsegarra1971/MyExcel

21

https://github.com/rc728m/ExoPlayer.git
https://exoplayer.dev/demo-application.html
https://github.com/rc728m/shaka-player.git
https://github.com/rc728m/hls.js
https://hls-js-dev.netlify.app/demo
https://github.com/rc728m/video.js.git
https://github.com/clappr/clappr-stats
https://github.com/videojs/mux.js#readme
http://chartjs.org/
https://github.com/jsegarra1971/MyExcel

