

Senior Design 2021 - Database Implementation

1. Backend database
a. The backend database ties together the rest of the software used on the Leo

Rover. Allowing us to collect, store, and read the data needed to accomplish the
rovers mission. We’re working with an Azure SQL DB and utilizing other tools
such as Azure Blob Storage for automation and image storage.

2. Access
a. Connect to Azure SQL Database Using Microsoft SQL Server Management

Studio (SSMS)
i. Open Microsoft SQL Server Management Studio.
ii. In the Connect to Server dialog box, log in using the Server name and

credentials provided.NOTE: Make sure to select Authentication as ‘SQL
Server Authentication’.

iii. Before connecting, click on Options>> . Under Connection Properties ,

Connect to database : enter SWBot (see screenshot below).

iv. Click “Connect”. You may receive a message as shown below requesting

to add your IP address to the allowed firewall rules. Please send your IP

address to email: fabiola.desantiago@lacity.org so that we may add the IP

to the rules. Once this have been completed you should be able to

connect successfully to the server.

v. Once you have successfully connected to the server, Object Explorer

should display like the screenshot below.

vi. In Object Explorer (tab on the left-hand side), expand Databases and

then expand ‘ SWBot ’ to view the objects in the database as shown below.

3. Data
a. Data is collected from the various hardware components on the Rover--such as a

gps module, level, GoPro, Depth Cameras, and more.
The data collected consists of :

i. Raw GPS
ii. Time stamps
iii. Latitude
iv. Latitude Reference
v. Longitude

vi. Longitude Reference
vii. X Slope
viii. Y Slope
ix. Angle
x. PinID
xi. Image URL

b. Data is collected from the Image / GoPro metadata and is recorded onto the
GoProImageData and EXIF DATA table within Azure. The data collected consists
of :

i. Latitude Reference
ii. Latitude
iii. Longitude
iv. Longitude Reference
v. ImageType

vi. TimeStamps
vii. Dates
viii. Orientation

ix. PinID
x. ImageID
xi. URL Front
xii. URL Back

4. Tables (Code) - SQL Code used to create our DB tables and staging tables.

a. GoProImageData

b. RoverData

c. EXIF_DATA

d. GOPROEXIF

e. ROVERDATA

f. SLOPE_DATA

5. Schema

Note: Top table should be labeled: “Rover Data” not “GoPro EXIF”

6. Linking our Data to the Navigate Los Angeles Data using GPS Coordinates
a. Correlating our data to the data in existing BOE Database tables is a work in

progress but we have a temporary solution which we were not able to implement
because of time constraints.

Our plan was to correlate our data to the data in the NavLa Sidewalks table using
PinID as our identifier. By taking our Lat/Long coordinates which we pull from our
GPS module and GoPro Exif, we can transform those coordinates into WGS
Web Mercator format and once you've updated your table with Web Mercator
coordinate fields, create a SHAPE field, then create the point geometries. This
will allow us to grab the closest PinID to the coordinates provided--allowing us to
tie our data to that of its surroundings.

BOE Nathans approach Code:

--SQL Statement to get the polygon coordinates from the sidewalk table (not
needed now):

SELECT TOP(1000) OBJECTID, SIDEWALK_ID, ASSETID, FEATURETYPE,
PIND, shape.STSrid as SRID,
replace(replace(SHAPE.STAsText(),'))',''),'POLYGON ((','') AS COORDINATES
FROM dbo.sdwkapp_sidewalks_wm

--Once you've updated your table with Web Mercator coordinate fields, create a
SHAPE field, then create the point geometries:

UPDATE {your_table_here} SET SHAPE =
geometry::STGeomFromText('POINT(' + cast({your_table_X_field} as varchar) + '
' + cast (your_table_Y_field} as varchar) + ')', 3857))

--Create the spatial index for your table (increases speed):

Create spatial Index [FDO_Shape] on [{your_table_here}]
(

[Shape]
) using geometry_grid with
(bounding_box = (-13224000,3985000,-13138000,4079000),
grids = (level_1 = Medium, level_2 = Medium,level_3 = Medium,level_4 =
Medium),
cells_per_object = 16, pad_index = off, sort_in_tempDB = off, drop_existing = off,
allow_row_locks = on, allow_page_locks = on) on [PRIMARY]

--Get the nearest SIDEWALK_ID (or PIND, etc.) to your points:

SELECT a.{your_table_unique_id},
(select top(1) b.sidewalk_id from sdwkapp_sidewalks as b
order by b.shape.STDistance(a.Shape)) as SIDEWALK_ID
FROM {your_table_here} as a
where a.{your_table_unique_id} = 9999 -- include 'where' clause to get one at a
time, replacing 9999 with desired id.

7. Blob Storage

a. Blob storage is necessary for saving the thousands of Images coming from the
rover such as the front, rear, and rendered Images. An account recording the
rovers data, holds an image container, which records a link to the blob storage
holding all image files.

b. Azure Storage Explorer Connection Guide

1. Navigate to
https://azure.microsoft.com/en-us/features/storage-explorer/

 and download Azure Storage Explorer.

2. Run StorageExplorer.exe to install the application.

3. Launch Azure Storage Explorer.

4. Click on the “Open Connect Dialog” icon.

5. Click on Storage Account

6. Select Shared access signature (SAS)

7. Paste the SAS connection string that is shared with you. The display
name should automatically populate. (SAS connection string is to be
provided by BOE).

8. Click connect on the summary page.

9. The storage container should now show on the left-hand side.

8. Containers
The Blob storage entails two containers which are the Images and the CSV

information.

9. Images/CSV
a. CSV table GoProImage Data with links to images in Blob Storage

10. Automation
a. Rover collects data, data is saved in CSV format, csv is saved within Azure Blob

CSV container, a trigger grabs the data from the csv and creates temporary
staging tables within the sql DB with the data from the csv which we can then use
within a View to transfer our data from the staging tables to our SQL tables.

11. Liaisons - POC
a. Fabiola Desantiago

i. fabiola.desantiago@lacity.org

ii. Contact for Azure connection access and inquiries.
b. Irvin Nguyen

i. irvin.nguyen@lacity.org
ii. Contact to schedule meetings and connect with other points of interest

c. Omar Haikal
i. omar.haikal@lacity.org
ii. Contact for Azure SQL and automation inquiries.

d. Miguel Grajeda
i. miguel.grajeda@lacity.org
ii. Contact for Navigate LA training and inquiries.

e. Nathan Neumann
i. nathan.neumann@lacity.org
ii. Contact for Azure SQL and Navigate LA inquiries.

f. Alexis Pena
i. alexis.pena020@gmail.com
ii. Senior Design Database Lead

g. Abigail Garcia
i. garciaabigail23@gmail.com
ii. Senior Design Database team member

