
1

Senior Design Final Report

Collaborative Visualization for Solar

System Treks

Version 1.0 - 05/14/2021

Team Members

Montague La France

Stanley Do

Zipeng Guo

Johnny Lee

Jose Garcia

Miguel Sanchez

Abdullah Alshebly

Odasys Soberanes

Christopher Smallwood

David Tang

Faculty Advisor:

Dr. David Krum

Liaisons:

Emily Law

Eddie Arevalo

Shan Malhotra

George Chang

Richard Kim

2

Table of Contents
1. Introduction..3

 1.1 Background..3

1.2 Design Principles...3

1.3 Design Benefits..3

1.4 Achievements...4

2. Related Works and Technologies..5

 2.1 Existing Solutions..5

 2.2 Reused Products...5

3. System Architecture...6

 3.1 Overview..6

 3.2 Data Flow...7

 3.3 Implementation..7

4. Results and Conclusions..11

 4.1 Project Results...11

 4.2 Future...12

5. References..14

3

1. Introduction
1.1 Background

 NASA JPL’s Solar System Treks (SST) is a public web application which enables

users to access and visualize 3D geospatial data of various planets in our solar system.

Users are provided various tools such as distance calculation tools and visual aids,

allowing users to calculate the distance between points and helping the user navigate

around a planet more easily. While this application is powerful on its own, it does not

allow for any means of networked collaboration. Currently, users can only share their

discoveries with those physically in the same room. Remotely, they can only share

screenshots and links using the SST. In such an unprecedented time and especially during

a global pandemic, it is vital that users have a means to effectively collaborate safely over

the web.

While there are existing solutions, they are simply not feasible due to their niche

target audiences and software requirements. Collaborative Visualization for Solar System

Treks (CVSST), will open the floor for collaboration amongst all users on the web

without requiring any additional software or fancy equipment other than a simple web

browser. This will make it easier for JPL to integrate CVSST into SST. Also, CVSST

stands out from previous solutions because it allows people to communicate and share

changes made to the terrain in real time. CVSST will allow users to talk to each other and

share their discoveries with one another safely over the web. Our solution comes with a

multitude of improvements and tools as well, such as a chatroom system, drawing tools to

mark up the 3D terrain, and the ability to export and import drawings for later use.

Development is not always an easy feat, which is why our team decided to adopt an Agile

workflow. We can get instant feedback from the JPL team and re-iterate on our solution

at an extremely quick rate. By using a thick client architecture, web socket technology,

and scalable back-end services, we can guarantee performance, scalability, and most

important of all – access for as many users as possible.

1.2 Design Principles

The main focus of our software was to create a session. A session is defined as an

online environment in which users can communicate, exchange data, and work with one

another. Then we expanded the collaborative features in the session by allowing users to

send messages using a chat box. Once the chat feature worked, we created drawing tools

for 2D and 3D terrain. Then we created states, which is defined as the current state of all

planetary data such as the planet/moon, layers data, collaborative markups, and

waypoints, to store the changes made by users. The goal was to allow users to collaborate

in the application.

1.3 Design Benefits

4

The benefit of the design as a web application was that it allowed a seamless

integration into JPL’s SST. It also makes the application simpler to use because users

would only need a web browser. Users would not have to download any additional

software or own special equipment. Being a web application makes it accessible because

it has the potential to work across different devices and platforms. These benefits are

important because JPL wants to make SST available to the public and to reach as many

users as possible.

1.4 Achievements

Some of our major achievements were we added collaborative features. They

include the ability to create sessions and type messages in the chat. Before CVSST,

collaboration was very limited. The most users could do to collaborate was using SST to

share screenshots or share links. Another achievement was adding drawing tools for 3D

terrain, which the SST did not have. We also added more drawing tools for 2D terrain. In

addition, we created states, which allowed users to save the data and changes made on the

planet. Then users can export the state as a file and share it with other users, who can

import the file and apply the state on their own version of the planet. The biggest

achievement was that the student team, project advisor, and JPL successfully worked

together on the project remotely. We never met in-person due to the global pandemic. It

was through hard work, patience, and the dedication of excellent team leaders that we

were able to persevere through the difficult pandemic and deliver the project to JPL by

the end of the academic school year.

5

2. Related Works and Technologies
2.1 Existing Solutions

 A Solar System Treks VR application was built by a previous student as a

master’s project. This application, called Trek VR, allows a user to visualize the globe in

3D space using virtual reality. However, Trek VR did not include collaborative features

and was only available to a niche audience. Initially, we wanted to build off of Trek VR

to include collaborative capabilities. We decided not to since we would not satisfy JPL’s

requirement of targeting the widest audience possible.

 There were no previous projects to build upon. We only had JPL’s Moon Trek

code to work with and to use for testing. We had to create most of the collaboration

features from scratch by using WebSockets. We also had to create the drawing tools on

3D terrain using CesiumJS, which the SST did not have.

2.2 Reused Products

 We reused some of the drawing tools code for 2D terrain. Lines, polylines, and

freehand polylines existed in the SST tools, such as the calculate distance tool. The

waypoints tool that we created used the Fly To function that was already in SST.

6

3. System Architecture
3.1 Overview

Figure 3-1. Level 0 Data-flow Diagram

Since our project was aimed towards providing additional functionality to existing

software, we did not impact too much of the existing system architecture. However, we

were able to implement additional modules and add new workflows on top. The modules

are shown in Figure 3-1. Level 0 Data-flow Diagram and the recipients are the other

people using the CVSST. All modules are made to interact with each other in their own

enclosed code base, as shown in Figure 3-2. Level 1 Data-flow Diagram below.

However, these modules are all instantiated in a single part of the code, which allows for

all of the additional functionality.

7

Figure 3-2. Level 1 Data-flow Diagram

3.2 Data Flow

The data flow between each of the modules are shown in the Figure 3-2. Level 1

Data-flow Diagram.

3.3 Implementation

User Interface Module

● The User Interface Module serves as the messenger between the user and the

Main Module. It provides a graphical user interface (GUI) for the user and allows

the user to interact with the entire system.

8

● The User Interface Module consists of buttons, a chat box, and a tools menu used

in the application.

● The User Interface Module was implemented with mostly code from the Dojo

Toolkit. Some was with HTML and CSS.

● The user inputs data into the system via click events, scroll events, and key press

events.

Main Control Module

● The Main Control Module serves as the main component where all of the CVSST

modules are instantiated and initialized. It also handles all user input and directs

the data to the correct modules for additional processing.

● The Main Control Module handles events from the User Interface Module. Based

on the commands, it will interact with the Chat Module, Tools Module,

Imports/Exports Module, or States Module.

Chat Module

● The Chat Module obtains data directly from the user interface and updates the

user interface with new data from the Collaborative Session Module.

● The Chat Module handles all chat events from the user interface, updates the chat

box with data from the session, and sends new data to the session, which will go

to the server.

● When there is a message being sent via text, the Main Control Module will handle

the event and call functions within the Chat Module, which retrieves user input

from the User Interface Module. Once the input is validated, the data is sent to the

Collaborative Session Module for processing, then to the WebSocket Server

Module for storage into the database. The WebSocket server will recognize the

data, store it in the database, and send the new entry to all users in the same

collaborative session. When the WebSocket Server Module receives this new

entry, the data will be sent back to the Chat Module to update the User Interface

Module accordingly.

Tools Module

● The Tools Module provides all of the collaborative functionalities for markups

and drawings on 2D and 3D terrain. It obtains user input from the User Interface

Module and updates the tools component in the User Interface Module.

● The user selects which tool they would like to mark up the 2D or 3D Solar System

terrain with, then clicks on a location on the terrain to place their drawing.

● The Tools Module also keeps track of the tools currently selected, the tools’ user-

defined attributes, and the location of the desired markup.

9

● The Tools Module sends all markup data to the States Module for processing and

to be rendered in the User Interface Module. Then the data is sent to the

Collaborative Session Module to be synchronized with other users.

● The drawing tools for 2D terrain used Esri ArcGIS code.

● The drawing tools for 3D terrain used CesiumJS code.

Imports/Exports Module

● The Imports/Exports Module handles all configuration imports and exports for

CVSST states.

● The Imports/Exports Module consists of functions that parse a configuration file

and pass it to the States Module for rendering onto the User Interface Module.

● The Imports/Exports Module allows users to export configurations in text format

to be imported for future use. It obtains data from the Collaboration Session

Module and sends imported data to the States Module.

States Module

● The States Module allows the user to save their session. The changes made during

a session can be saved.

● The user can go back to a previous session by choosing a state. Refer to the

Software Requirements Specification document for the definition of state.

● The States Module utilizes the WebSocket server’s memory and browser

memory.

Collaborative Session Module

● A collaborative session is an online environment in which users can

communicate, exchange data, and work with one another. Sessions were

implemented using WebSockets.

● The Collaborative Session Module serves as the main source of data transfer

between the client and public WebSocket server. It transmits data back-and-forth

with the WebSocket server. It also transmits data between the Chat Module, Tools

Module, States Module, and Import/Exports Module.

● Each room was a session that users joined. If a room did not exist, then a user

entered a username, created a room name, and created a password. After that, they

click the “create” button to create a room. For others to join a room, they enter a

username, the room’s name and password, and click the “join” button.

WebSocket Server Module

● The WebSocket Server Module stores any data from the client into the database.

It is in charge of all the data coming to and from the clients. It keeps track of all

collaborative sessions, validates data, and controls all read and write functions

into the database.

10

● The WebSocket Server Module receives data in the form of JSON or text from the

client WebSocket, then processes the data so that it can be written to or read from

the database.

The implementation of our code was mostly iterative since our primary goal was

to complete the functionality first and foremost. One of the side effects that we have seen

using this iterative approach is that oftentimes we strayed away from our best practices

and design principles to make a certain functionality work. Even with a design in place,

we would often go down a rabbit hole during implementation resulting in an increase in

complexity.

11

4. Results and Conclusions
4.1 Project Results

We were able to add collaborative features. They include the ability to create

sessions and type messages in the chat. We also added drawing tools for 3D terrain,

which the SST did not have. We also added more drawing tools for 2D terrain. In

addition, we created states, which allowed users to save the data and changes made on the

planet. Then users can export the state as a file and share it with other users, who can

import the file and apply the state on their own version of the planet. These collaborative

features will make it easier for users to collaborate and work remotely, especially during

the global pandemic.

While virtual reality (VR) does provide a more immersive user experience, web-

based VR may prove to be an extremely challenging requirement due to its poor browser

support and lack of stable/usable technologies. One of things we looked into was

WebXR, but with its limited documentation and usability, it prevented us from accessing

our desired range of users. The development team is also unable to meet in person to use

and test VR equipment. We would have to create our own web-based VR API or use

other existing libraries and integrate them into the SST software. As a result, we decided

against implementing VR for the time being and instead, focused on adding collaboration

features.

While working on the project, we identified some bugs. Some of those the team

was unable to fix, while the others have been fixed. We believe it is worth letting the JPL

team know about those bugs. They are listed below:

● Unfixable bugs (very complicated, tricky, and lack of time)

○ Arcing problems

■ Bug: Lines and shapes get distorted at the North/South poles in 3D

view.

■ Bug: A problem with converting things from 2D to 3D, especially

near the poles.

○ Weird occasional bug on Moon Trek and in CVSST code with 2D polyline

■ Polyline sometimes doesn't work for calculating distance and other

tools.

■ Replicate bug: Double clicking draws a line. If you click at a

different point, the line you just drew disappears. The polyline

drawing seems to not end.

■ Bug disappeared by itself after one to two days

○ Bug: 2D drawing tools don't work properly on North Pole Map and South

Pole Map

12

■ The 2D drawings on these maps do not appear at the correct

positions on the 3D globe and sometimes an error message

appears.

● Fixed bugs (working, but not the best solution)

○ ToolsModuleToolsComponent.js and ToolsComponent.js are somehow

connected

■ The code for the 2D drawing tools is in the

ToolsModuleToolsComponent.js file.

■ Bug: When the 2D drawing tools are used, they call some of the

code in ToolsComponent.js file, which is an irrelevant file. This

can be seen by looking at the console logs after using the 2D

drawing tools.

■ Bug: The most recently used tool in ToolsComponent.js (calculate

distance, elevation, etc.) will be called every time any 2D line is

drawn, which uses the ToolsModuleToolsComponent.js file. The

bug was fixed for the other line drawings. The 2D polyline

drawing still has this bug.

 Despite having satisfied a majority of the requirements, it is likely that some of

the code implementation may incur a large amount of technical debt. Refer to Section 10

of the Software Design Document to see the full list of requirements met and not met.

Since a lot of the programming was iterative, we found ourselves in many situations

which moved us farther away from the initial design. Working with a completely new

code base also created an extremely large technical cliff amongst the team. A lot of the

time was spent researching the actual code. The Dojo Toolkit, CesiumJS, and Esri

ArcGIS in the application were also older and outdated versions, meaning that only some

documentation would be relevant. For a lot of us, JavaScript was a completely new

language, and learning both front-end and back-end development whilst being full-time

students was a major challenge.

4.2. Future

A future team can potentially expand and add more collaborative functionalities

to CVSST. Some future research is to look into better VR solutions to implement. An

alternative is for the JPL team to integrate CVSST into SST. These are some of the

team’s thoughts for the future, but the final decision is up to the JPL team.

Some major additions for future teams taking on this project would be to

restructure how entities in CesiumJS are placed. Currently, CesiumJS creates a new

worker thread every time an entity is placed, causing more resources to be fetched from

the server. Despite enabling caching, we found that these workers would request a new

copy despite the file not having changed. Eliminating these useless requests would

improve performance significantly.

13

Another major addition would be the implementation of a database. Refer to

Section 8 of the Software Design Document for a detailed explanation on the database.

Despite having a database structure for states, entities, chat, and rooms, we were never

able to implement a database to save data. All of the data is currently stored in memory

on the server and there is no way to clear the memory without restarting the server.

Having a database would allow us to actually save the data over long periods of time.

14

5. References

● WebXR

○ https://immersiveweb.dev/

○ https://github.com/Rufus31415/Simple-WebXR-Unity

https://immersiveweb.dev/
https://github.com/Rufus31415/Simple-WebXR-Unity

