

Senior Design Final Report

Augmented Reality for Hydrology

Version 2

Version 1.0 - 05/04/2019

Team Members:

Mher Oganesyan

Refugio Arroyo-Martinez

Leonardo Obay

Anthony Soto

Gilberto Placidon

Faculty Advisor:

Dr. Elaine Kang

Liaisons:

George Chang

Natalie Gallegos

Emily Law

Shan Malhotra

Michael Rueckert

1

Table of Contents

1. Introduction 2

1.1. Background 2

1.2. Design Principles 2

1.3. Design Benefits 3

1.4. Challenges 3

1.5. Achievements 4

1.6. Testing Results 4

2. Related Work and Technologies 5

2.1. Existing Solutions 5

2.2. Reused Products 5

3. System Architecture 6

3.1. Overview 6

3.2. Data Flow 7

3.3. Implementation 8

4. Results and Conclusions 11

4.1. Results 11

4.2. Future Work 11

5. References 12

2

1. Introduction:
1.1. Background:

Jet Propulsion Laboratory (JPL) is well known for their satellites and the

mars rover. They develop numerous technologies for space exploration, but that is

not all that they do. JPL also collects and stores hydrology data into the Watertrek

database from the Western United States, using a combination of sensors from in

environment to in space and by mathematical models that they have developed.

One example of this is using sensors placed in the mountains to weigh snow pillows

and give an approximation of the snow depth. Provided the Augmented Reality (AR)

framework for Android from last year’s Senior Design team, version 2 of the

Augmented Reality for Hydrology application is aimed at improving the

representation of the hydrology data by implementing a more robust and visual

user interface.

Augmented Reality is the use of computer-generated graphics to alter the

user’s perception of the real world. This is done by taking a device that has a

camera and a display that can render computer graphics. As the user looks at the

live camera feed, computer-generated objects can be place on the display; giving the

user the feeling as if those objects were in the real world.

JPL currently has a web application that displays Watertrek data on an

interactive map of the world. The limitations to this are that the user can only view

the graphics that are drawn onto the map and not the data that is correlated with

each point-of-interest.

Motivation to make the Android application are that it will allow for an

interactive way for the user to learn about hydrology in their local area with the use

of augmented reality from version one’s framework. As the application will be on

Android devices, it will also allow the user to have access to the data on the go.

Since the data is large and in a raw format, we would be providing the historical

data in a graph format for the user to be able to see trends. In addition, the AR

technology will help visualize data sets that are not visible to the user since they are

located underground.

1.2. Design Principles:

The main deliverable is to create an Android application the represents

hydrology data from Watertrek by using the augmented reality components from

version one’s framework. Our goal is to make the user interface robust and intuitive

3

to provide a smooth user experience. As the user experience is at the top of the

priority list, along with the representation of the scientific data, we focused on that.

For the user experience, we wanted fast loading times so the user did not have to

wait for data population and smooth device performance. Fast loading times are

achieved by using techniques that split up the data set, along with sorting

algorithms that require small computation time. Some data may be large; therefore,

they can be preprocessed on application start up. In most cases, the data can be

cleaned up to reduce complexity, which will increase performance. In addition, the

user interface must be simple enough for the user to easily navigate it without

having any knowledge about the application or the hydrology data. Lastly, the

application must have modular components for future developers to expand on the

application, while implementing a single responsibility principle for the applications

activities.

1.3. Design Benefits:

By creating an application where the user experience is the top priority for

representing the hydrological data, it helps ensure for the smoothest performance of

the application. Load times to data is near instantaneous and device performance is

smooth even when rendering terrain data. Creating modular components allowed

us to easily update the application several times without spending too much time

reprogramming. This will also be useful for future developers for the application as

they can easily improve and expand on all the different components provided.

In addition to focusing on the user experience, the user interface is much

more intuitive and appealing than before. The user can easily navigate throughout

the application without having the need to figure out where they left off or how to

get to the specific view that they require.

1.4. Challenges:

The main challenges that we ran into during development of the project

were:

● Data processing and device performance

● 3D terrain mesh scaling accuracies

● Discrepancies from sensors of different devices

4

1.5. Achievements:

We made an Android application that visualizes hydrology data using

Augmented Reality components built from version one’s framework. Improvements

that came with version two of the application are as follows:

● Improving the user interface and user experience

● Refining the interactive user interface that visualizes the dataset

● Provide line-of-sight information

● Enhancing the performance of data processing for REST calls

● Providing historical data in a graph format for clearer data analysis

● Ability to filter the historical data by specifying a range in time

● Superimposing a 3D terrain mesh onto the actual terrain through the

camera feed

● Use the implementation of maps to help guide the user to a specified

point-of-interest

1.6. Testing Results:

The application was tested in various areas throughout Los Angeles and

Mount Wilson of the Angeles National Forest. Achievements that were provided

above were from testing results. We saw a major performance boost in retrieving

large amounts of data from Watertrek’s database; a thirty second wait time for data

to load has gone down to a near instantaneous loading time. Testing in the

mountains allowed us to view the accurate registration of the terrain mesh onto the

actual terrain through the camera view.

5

2. Related Work and Technologies:
2.1. Existing Solutions:

As mentioned previously, the only existing system that visualizes the

hydrology data is the Watertrek web application. Even then the historical data that

is stored in the Watertrek database that correlates to the different points-of-interest

is not displayed to the users of the application. The web application provides

visuals on the map that can show river networks, locations of wells, soil moisture,

change in the terrain over time, etc. Historical data can only be accessed by

selected a specific year on the timeline located at the bottom of the web page, thus

changing the visualization on the map.

2.2. Reused Products:

The framework from version one was used to develop the application that

was developed on Android Studio by using Java. OpenGL ES 2.0 was used to alter

and create new augmented reality components for the framework. Open Street

Maps was used to provide an eagle-eye view of the point-of-interest. Graph View

was used to create graphs for the different data types to display trends. Arc Menu

was used to make an easy-to-access menu for selecting different data types.

Swagger was used for managing and testing the REST calls correlated to Watertrek.

ArcGIS was used for to retrieve data for the terrain mesh.

6

3. System architecture:
3.1. Overview:

The architecture for the application is self-contained and is split into four major modules. Each

module handles the various components needed for the operation of the program. The overall

application is based on user input and taking that input, a specified output will be displayed to

the device with relevant Watertrek data.

The diagram below (DFD level 0) is a high-level representation of how the application operates:

7

3.2. Data Flow:

Below is a diagram (DFD level 1) that portrays how the different components interact and

communicate with each other to have a single functioning application. This is a brief overview

of how they work together:

3.2.1 User Interface (UI): Allows the user of the application to interact with and

navigate the application. It takes in user inputs and processes them by passing the

necessary hardware readings to the software interface to make network calls and data

processing to output the relevant data to the user.

3.2.2 Hardware Interface: Continuously outputs sensor data. That information is

grabbed by the user/software interface whenever a user interacts with a UI element that

needs sensor data to process network calls.

8

3.2.3 Software Interface: Handles network calls by either grabbing cached data or

requesting a network call from the Communication Interface and caching the data for

later use when requested by the user. Also, does data processing from retrieved data then

passes data to user interface.

3.2.4 Communication Interface: Takes in network requests from the Software Interface,

executes them, and retrieves the output from the internet to pass into the Software

Interface for caching of data or instant use by the User Interface.

3.3. Implementation:

Our project was focused on six areas: the database, local data

processing/management, mesh processing, textures for the mesh, user interface and user

experience, and improvements to the AR framework.

3.3.1. Watertrek Hydrology Data

Hydrology data is gathered using JPL's REST API, provided valid user

credentials. Before calls can be made to JPL’s servers, we establish a connection

with the credentials and use that instance throughout the application. Since there

are different data types that we provide, we have base URLs that we append

parameters (start date, end date, or even bounding box) before executing the call.

The REST calls are also split into multiple URL requests, separating by date.

Digital elevation map (DEM) data is retrieved by making a network request

from a base URL, specifying the latitude, longitude, bounding box, resolution, return

type (e.g. TIFF), and pixel data type (e.g. signed 16 bit). Retrieval of the DEM is

executed on application startup, in the loading screen, due to long loading time and

processing.

Textures for the terrain mesh are retrieved by making a network call to the

JPL server and ArcGIS server (one for river network and the other for terrain

texture respectively). A bitmap is retrieved by the network call based off of the

latitude/longitude, bounding box, and resolution specified. Calls for the textures are

also done on application startup.

3.3.2. Local Data Processing/Management

Hydrology data from JPL’s database is pulled via internet as a JSON format.

Due to its key value pair and fast response time of O(1) . It is then parsed using

GSON, which serializes and deserializes Java objects to JSON. The data then can be

used locally in an arraylist of plain old Java object (POJO) in order to access their

unique attributes such as unique id , storage units and time and date. In order to

improve the processing of the data we decided to call upon the JPL database in

various small increments instead of one large network call.

Data processing and management for the DEM and terrain texture is

specified below.

9

 3.3.3 Mesh Processing

Network call is made to JPL server to retrieve a DEM of the requested subset

area based off of a bounding box surrounding the user’s location. The bounding box

has a width and height of 0.2 degrees along the latitude and longitude (about 22236

meters for latitude and 11118 meters along longitude when near the equator).

TIFFLib is used to create a TIFFImage object of the DEM along with its Raster

and Directory methods for reading the pixel information of the DEM for

constructing an arrayList of vectors consisting of xyz components; pixel location(x

and y component) and pixel value(z component).

Vectors are then downscaled by 100 as its original range along the xyz values

stretch out far. Afterwards xy components are then normalized to be in the range of

negative to positive where the south/west is negative and north/east is positive, as

they are originally all in the range of 0+. This is done so that the center of the mesh

will be at the location 0,0,0 where the user’s initial location is.

Indices are processed in quadrants (two triangles) in a counterclockwise

direction (Left Top, Left Bottom, Right Bottom, Right Bottom, Right Top, Left Top).

An arrayList of vertices is made based off of the list of Vectors in the order of

the indices, which is then passed on to the Vertex Shader for further handling.

3.3.4. Textures

 Texture Coordinates are calculated in rows of quadrants(two triangles) in a

counterclockwise direction. A higher resolution is used for the textures(800x800 or

higher), as a low resolution (such as 400x400) will look blurry when seen up close.

The range for the texture coordinate values along the width and height is 0 to 1 for

any texture used. ArrayList of texture coordinates is then passed to the Vertex

shader for further handling.

3.3.5. User Interface/User Experience

The user interface and user experience were a large portion of the project

since we were using it help represent the hydrological data. We provided a compass

on the main camera screen to help guide/orientate the user. The orientation views

are comprised of a view for azimuth and pitch. The azimuth view aids the user with

a horizontal angle, while the pitch view aids the user in determining the x-axis

orientation of the phone. Both views were implemented using recycler views in

which each view populated its own separate value from the gyroscope. The recycler

review was made to be circular, so the data comes back around in a loop like a

compass would. As we retrieved updates from the gyroscope, the views were

updated automatically so it looked like the recycler view was scrolling on its own.

An arc menu was implemented for one handed selection of different data types. The

arc menu supports enabling multiple data types at once. The menu was borrowed

by a third-party developer by the name of Moshen Hatami by which is credited in

the source code.

10

A bottom navigation was used so the user can navigate between different

views for the selected point-of-interest. The bottom navigation was an activity of its

own that called to fragments, a user interface component, and loaded them onto the

display. Those fragment components were the graph, list and map view. Open

street maps was used for the implementation of the maps, taking the latitude and

longitude of the point of interests and displaying it on the map. List view was a

recycler view of the raw data that was retrieved from JPL’s servers. Arraylists of the

data are used in populating recycler view. The view also had a date picker

component to select the start and end date of the data. Graph view was

implemented by using the graph view library for android, displaying the data as line

graph. Dynamic zooming of the graph was enabled with a simple parameter. For

the x and y axis to be dynamic, we saved the x and y labels as strings, then set the

number of labels that we wanted to display per axis (10 per axis), and upon

resetting the values of the graph, the labels are dynamically updated.

3.3.6. AR Framework/Components

The framework provided by last year’s senior design team had three main

components: user interface, sensors, and rendering. We used the framework to

render AR components to the screen to visualize the hydrology datasets. Changes

made to the framework are as follows: perspective added to components for

distance, positioning of components in relevance to real world positioning, and

adjustments for scaling of terrain mesh.

Billboards size have been scaled according to their distance from the user.

Points of Interest don’t all have elevation values, but with the location of the POI we

can grab the elevation of the corresponding location on the DEM.

The terrain mesh was the only new component added to the framework. It

was loaded in during application startup and down sampled to compensate for

device performance. An option for terrain textures are available for the user.

Purpose of the terrain texture is to add detail to the terrain despite the down

sampling.

11

4. Results and Conclusions:
4.1. Results:
 We developed an application that represents the hydrological data using augmented

reality components from version one’s framework with a more robust and visual user

interface. This allows for an interactive way for the user to learn about hydrology in their

local area.

 Historical data for the different points-of-interest now loads faster, making it more

user friendly and less strenuous on the network call. Graph representation of the historical

data allows for better data analysis as the user can see trends, not just raw data. Data can

be filtered by the user by specifying a range in time to view trends during specified periods.

 Additional components have also been provided such as line of sight and maps.

Open Street Maps was used to implement maps as it is open source and it provides a nice

way to help guide the user to the selected point-of-interest. Line of sight is an algorithm

developed by JPL that returns the elevation of the terrain of where the device is pointing to.

 The terrain mesh that is superimposed onto the screen is to scale in relevance to the

real world and updates as the user travels. It requires little computation as it is down

sampled, and textures are used to mask any rough edges from down sampling and to make

the mesh more appealing.

 All the various components that we wanted in the application were implemented

successfully, but there was difficulty registering the terrain mesh properly since the

framework solely relies on the gyroscope for positioning objects. In areas that interfered

with the compass, the AR objects would not stay in their proper position.

4.2. Future Work:
 As we were able to develop an Android application the visualize hydrology data by

using augmented reality components, we were still only to accomplish so much during the

school year. The following are improvements that we would have wanted to implement

ourselves and would suggest for future work:

● Offline mode for areas with poor or no internet connection

● Better registration of the terrain mesh using computer vision techniques

● Improve the tracking of the framework by using the acetometer to track movement

when the compass is being affected by external forces

● Cross platform deployment of the application such as iOS

● Large scale deployment of the application for public use by utilizing Amazon’s Web

Services

● Major design improvements to user interface

● Provide additional data from Watertrek

12

5. References:

Android Developer Website: https://developer.android.com/reference/

OpenGL es 2.0 standard:

https://www.khronos.org/registry/OpenGL/specs/es/2.0/es_full_spec_2.0.pdf

Graphview: https://github.com/jjoe64/GraphView or http://www.android-

graphview.org/

OpenStreetMaps: http://osmdroid.github.io/osmdroid

ArcGIS REST Service: https://services.arcgisonline.com/arcgis/rest/services

https://developer.android.com/reference/
https://www.khronos.org/registry/OpenGL/specs/es/2.0/es_full_spec_2.0.pdf
https://github.com/jjoe64/GraphView
http://www.android-graphview.org/
http://www.android-graphview.org/
http://osmdroid.github.io/osmdroid
https://services.arcgisonline.com/arcgis/rest/services

