

Software Design

Document

for

CSULA Swarmathon Team

Version 1 approved

Prepared by:
Jonathan Sahagun

Jose Ambrosio
Christopher Portugal

Christian Soltero
Mikey Thong

Advisors:
Dr. Jose Macias

 Richard Cross

4/18/2018

 2

Table of Contents
Table of Contents ... 2

Revision History ... 4

1. Introduction .. 5

1.1 Purpose... 5

1.2 Scope.. 5

1.3 Intended Audience and Reading Suggestions .. 5

1.4 System Overview... 5

2. Design Considerations ... 6

2.1 Assumptions and Dependencies ... 6

2.2 General Constraints ... 6

2.3 Goals and Guidelines ... 6

2.4 Development Methods .. 7

3. Architectural Strategies .. 8

4. System Architecture ... 9

4.1 DFD 0 ... 9

4.2 DFD 1 ... 9
4.2.1 ROS ... 10
4.2.2 Behaviors ... 10
4.2.3 Diagnostics ... 10
4.2.4 Abridge ... 10
4.2.5 Mapping ... 10

5. Policies and Tactics... 12

5.1 Choice of which specific products used ... 12

5.2 Plans for ensuring requirements traceability .. 12

5.3 Plans for testing the software ... 12

5.4 How to build and/or generate the system's deliverables (how to compile, link,
load, etc.) .. 12

6. Detailed System Design ... 13

7. Detailed Lower level Component Design ... 14

8. Database Design .. 15

9. User Interface ... 16

9.1 Overview of User Interface .. 16

9.3 User Interface Flow Model ... 17

10. Requirements Validation and Verification ... 18

 3

11. Glossary ... 19

12. References ... 19

 4

Revision History

Name Date Reason For Changes Version

 Draft #1 12/04/2017

Draft #2 12/06/2018 updating

 Final 5/5/2018 Completing first version 1.0

 5

1. Introduction

1.1 Purpose

This document will outline in detail the software architecture and design for the Swarmies. This

document will provide several views of the system’s design to facilitate communication and

understanding of the system. It intends to capture and convey the significant architectural and

design decisions that have been made for the Swarmies.

1.2 Scope

This document provides the architecture and design of Swarmathon,

1.3 Intended Audience and Reading Suggestions

This document is written on a technical level to address the CSULA Computer Science

department.

1.4 System Overview

Swarmies Software is being built for the UNM/NASA Swarmathon Competition. The operating

system being used is Ubuntu 16.04. The software frameworks that Robotic Operating System has

to offer, will be utilized to work on the Swarmies. All coding will be done in C++.

 6

2. Design Considerations
2.1 Assumptions and Dependencies

● Related software or hardware: ROS

● Operating systems: Ubuntu 16.04

● End-user characteristics: By competition rules, we are not allowed to change

anything pertaining to the GUI. However, the search and retrieval algorithm may be

altered.

● Possible and/or probable changes in functionality: There are plans to alter the

algorithms pertaining to localization, mapping, navigation, and data retrieval. This should

give our Swarmie a better approximation of the perceived world.

2.2 General Constraints

● Hardware Limitations: We are not allowed to alter the state of the Swarmie

rover’s hardware.

● End-user environment: We are not allowed to alter the state of the GUI.

● Availability or volatility of resources: We are limited on the number of engineers

that can be of help. All of which have a finite amount of time to stay caught up on current

trends.

● Standards compliance: We must use the ROS version, Kinetic Kame, as that is the

version that will be used during the competition.

● Interoperability requirements: All communication between Swarmie’s must be

done via ROS topics and the ROS master.

● Data distribution requirements: All communication between Swarmie’s must be

done via ROS topics and the ROS master.

● Memory and other capacity limitations: The Swarmie technically has limited

storage on its main processing unit (Intel NUC).

● Performance requirements: Velocity of Swarmie’s must not exceed 1 meter per

second.

● Network communications: To control a Swarmie from another pc, the Swarmie

and the controlling pc must be on the same local network.

● Verification and validation requirements (testing): By competition rules, there are

check-ins for the competition that we must meet on time with no exceptions.

2.3 Goals and Guidelines

● The KISS principle ("Keep it simple stupid!")

 7

● The Software has a mandatory delivery date that must be met: 3/20/2018 (Final

Code Submission on Github is 3/20/2018)

● Competition guidelines must be followed as stated on the competitions’ Github.

2.4 Development Methods
The development method used is Crystal Methods Methodology, developed by Alistair

Cockburn. Crystal Method’s philosophy was that each team has a different set of talents and

skills and therefore each team should process uniquely tailored to it. The Swarmies had ample

areas that needed to be improved. Some of the major areas that we attempted to improve were

localization, mapping and search algorithm. Our team was divided into separate teams each

tackling one of the major areas. The teams were assigned based on skill and interest. We also

integrated portions of the Scrum methodology, developed Ken Schwaber. There was a backlog

kept of the prioritized work that needed to be done. Items within the backlog were completed or

attempted on a weekly basis. Weekly meetings were held to discuss and explain progress as well

upcoming work and obstacles raised.

 8

3. Architectural Strategies
● Used solely C++ instead of pairing it with Python because managing and

integrating two languages result in slowing down project progress.

● Reuse of existing software components to implement various parts/features of the

system: Base software given by competition

● Future plans for enhancing the software: Develop a better search algorithm from

the default algorithm given. Make changes in Swarmie’s behavior when it identifies a

cluster of cubes. Improve accuracy of rover’s localization, more specifically regarding its

attempt to return to the collection zone.

● User interface paradigms (or system input and output models): GUI and 3D

models provided by competition organizers in STL files.

● Hardware and/or software interface paradigms: The competition organizers have

given the resources to construct our own Swarmie rovers which can be used to run

physical simulations.

● Error detection and recovery: If all Swarmie’s don’t all connect to the mapping

system before it starts then stray(s) will create its/their own mapping system.

● Memory management policies: Since the map used by the Swarmies is a sizable

2D array we avoid doing unnecessary copies to it.

● Communication mechanisms: The host pc communicates with the Swarmie rovers

over a local network.

 9

4. System Architecture
4.1 DFD 0

Rovers are equipped with various sensors to aid in its tasks. The most important sensors are the

for input the camera, IMU, motor encoder and GPS. From those inputs ROS is able to

autonomously run and complete its tasks. The output is simply data to the motors that move the

rover and actuate its claw.

The image above is the DFD 0 of a Swarmie. The Swarmies have four inputs which are from the

rover hardware, camera, IMU, and network interface hardware. The input that a Swarmie

receives from the rover hardware is ultrasonic and encoder data. Ultrasonic data is used to

identify obstacles. The encoder data is used to help track how much a rover has moved. The

Swarmie receives video from the camera which the software uses to identify April tags. The

Swarmie takes in orientation, angular velocity and GPS data which help identify the Swarmie’s

position. The last input is network interface hardware which is just a router which ROS uses to

receive data from other Swarmies. The Swarmies outputs to the rover hardware are commands to

Servos and DC motors. It also outputs data back to the network interface hardware which is just

data to other Swarmies.

4.2 DFD 1

 10

4.2.1 ROS

ROS is the core framework that allows communication between all the modules.

4.2.2 Behaviors

The Behaviors module is the logic that runs the automatous mode of the rover. It uses data from

retrieved from the hardware deicide what action to take using a state machine to switch between

tasks.

4.2.3 Diagnostics

The Diagnostics module allows the program to log the information that is being passed between

the modules. It is used to create files and logs to simulate inputs from previous runs, to debug

errors, and other diagnostic needs.

4.2.4 Abridge

The Abridge module is the module that reads the hardware data and publishes that data. It takes

the data from the IMU, GPS, Camera and the custom Arduino board and creates ROS Topics for

each sensor. Not only does this module publishes the raw data, it also publishes filtered data. The

data filtering my be done at the Arduino level or in this module.

4.2.5 Mapping

 11

The Mapping module creates and publishes a map using a ROS package called Grid_Map. A

grid map is, at its core, a 2D array with values representing some real world object. For example

a value of 10 may denote an obstacle while a value of 0 denotes unmapped. As the rover’s

sensors collect data, this module updates the map; so if the sonar does not ping we can safely say

there are no obstacles in front of the rover, and if it does ping, the map is updated to make the

obstacle. All rovers connected to the ROS Master shall contribute to the map and the rovers shall

use a shared map. This is done by having all rovers publish and subscribing to the same grid map

topic.

 12

5. Policies and Tactics
5.1 Choice of which specific products used

 (QTCreator, C++)

5.2 Plans for ensuring requirements traceability

 A GitHub repository has been set-up for the CSULA-Swarmathon team to ensure

traceability.

5.3 Plans for testing the software

 Test simulated Swarmie’s as often as possible to make sure logic is working as intended.

Test actual Swarmie(s) at least three hours a week.

5.4 How to build and/or generate the system's deliverables (how to

compile, link, load, etc.)

 To generate the system’s deliverables, a terminal is used to navigate to the project’s root

folder the run command: ./run.sh

 To build the system’s deliverables, a terminal is used to navigate to the project’s root

folder or subfolders and then run the command: catkin build

 13

6. Detailed System Design

Omitted as the Section 4.2 sufficiently describes the System Design

 14

7. Detailed Lower level Component Design

Omitted as the 4.2 sufficiently describes the System Design

 15

8. Database Design

Not Applicable

 16

9. User Interface

9.1 Overview of User Interface
Describe the functionality of the system from the user’s perspective. Explain how the user

will be able to use your system to complete all the expected features and the feedback

Information that will be displayed for the user. This is an overview of the UI and its use. The

user manual will contain extensive detail about the actual use of the software.

The goal of this software project is to develop an autonomous search algorithm so our Swarmie

can search and retrieve april cubes. A user can choose to simulate Swarmie(s) in a virtual

environment to observe a demo of the applied search algorithm without having to use an actual

Swarmie. The user also has the option of using a real Swarmie in combination with the rover

GUI to observe all of the returned data such as camera, ultrasonic, etc.

9.2 Screen Frameworks or Images
This image is of Gazebo running a simulation of the competition.

 17

9.3 User Interface Flow Model
The image above shows the central component user interface. The chart on the top left shows the

connected Swarmies to the computer running the GUI. The image in the top center is video feed

from the camera. The Graph in the top right is the map of the chosen Swarmie’s path. In the

center of the GUI there are three lines with a measurement in meters which represents the sonar

readings. The cube in the middle of the right side Represents the orientation which is given by

the IMU. The text box in the bottom left is information about the selected Swarmie. The bottom

center allows the user to choose between the Swarmie’s two modes which are autonomous and

manual. The bottom right Is the visualization of control inputs when the Swarmie is in manual

mode.

 18

10. Requirements Validation and Verification

Requirement Component Module Testing

The rover hardware shall receive

the motor and sensor data from

another rover.

Network Interface Hardware Grid Map updating

The rover hardware shall send the

motor and sensor commands to

other rovers.

Network Interface Hardware Checking the ROS topics

The rover hardware shall transfer

the rover’s data over a network.

Network Interface Hardware Checking the ROS topics

The rover software shall detect the

Apriltags.

Camera Adding squares around

Apriltags on the camera

feed

The rover software shall map

obstacles.

Mapping Checking grid map in

RVIZ

The rover software shall receive

sensor data.

Abridge Checking the ROS topics

The rover software shall send grid

map data.

Network Interface Hardware Checking grid map in

RVIZ

The rover software shall check

whether the sensors are running.

Diagnostics Checking the ROS topics

The rover software shall check

sensors for connection status.

Diagnostics Checking the logs for

error/ Error message in

GUI

The rover software shall avoid

obstacles.

Mapping Autonomous rover drive

test

The rover software shall avoid

pushing the april cubes out the

collection zone.

Behaviors Autonomous rover drive

test

The rover software shall keep track

of the sensors.

Abridge Checking the ROS topics

The rover software shall avoid

collision with another rover.

Behaviors Autonomous rover drive

test

The rover software shall search for

april cubes.

Behaviors Autonomous rover drive

test

The rover software shall pick up

april cubes.

Behaviors Autonomous rover drive

test

The rover software shall drop off

april cubes in the collection zone.

Behaviors Autonomous rover drive

test

The rover software shall check if

the rover is in the collection zone.

Mapping Autonomous rover drive

test

The rovers shall move

autonomously.

Behaviors Autonomous rover drive

test

 19

11. Glossary

ROS Robot Operating System

GUI Graphical User Interface

IMU Inertial Measurement Unit

STL Stereolithography

DFD Data Flow Diagram

12. References
https://github.com/BCLab-UNM/Swarmathon-Docs/blob/master/Competition%20Rules.md

	Table of Contents
	Revision History
	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Intended Audience and Reading Suggestions
	1.4 System Overview

	2. Design Considerations
	2.1 Assumptions and Dependencies
	2.2 General Constraints
	2.3 Goals and Guidelines
	2.4 Development Methods

	3. Architectural Strategies
	4. System Architecture
	4.1 DFD 0
	4.2 DFD 1
	4.2.1 ROS
	4.2.2 Behaviors
	4.2.3 Diagnostics
	4.2.4 Abridge
	4.2.5 Mapping

	5. Policies and Tactics
	5.1 Choice of which specific products used
	5.2 Plans for ensuring requirements traceability
	5.3 Plans for testing the software
	5.4 How to build and/or generate the system's deliverables (how to compile, link, load, etc.)

	6. Detailed System Design
	7. Detailed Lower level Component Design
	8. Database Design
	9. User Interface
	9.1 Overview of User Interface
	9.3 User Interface Flow Model

	10. Requirements Validation and Verification
	11. Glossary
	12. References

