Diabetic Patients Monitoring

CSULA Advisor: Dr. Mohammad Pourhomayoun Medtronic Liaison: Alex Zhong Real Time Data: Andrew Padilla, Koenrad MacBride Prediction Engine: Mohammadreza Vahedi, Wun Woo Insight Engine: Christopher Fong, Yosep Kim

Table of Contents

Table of Contents	2
Introduction	2
Background	3
Project Goal	3
Real Time Data	4
Overview	4
Progress	4
Kafka	4
Storm	5
Insight Engine API	5
Infrastructure	5
Database Layout	5
Prediction Engine Step 1: Data Preprocessing Step 2: Feature Extraction Correlation coefficient between all features and SG Step 4: Dimensionality Reduction Step 5: Prediction using Machine Learning Algorithms	7 7 9 10 10
Insight Engine	11
Overview	11
Step 1: Data Preprocessing	11
Step 2: Feature Extraction	11
Step 3: Hyper and Hypo events and its Durations	11
Correlation between all features versus Hyper Count	12
Correlation between all features versus Hypo Count	13
Correlation between all features versus Hyper Duration	14
Correlation between all features versus Hyper Duration	15
Step 4: Automating Insights	16
Technologies Used	18
System Architecture	19
Data Flow	19
Database Schema	21
Conclusion and Results	22

Introduction

Background

Diabetes is a disease that causes a person's blood glucose (BG) levels to be too high. Insulin, a hormone created by the pancreas, helps regulate the level of glucose in the blood. A person is said to have type 1 diabetes when their body can not produce insulin at all. Diabetic patients need to closely monitor their BG level and maintain it within a specific range. Hyperglycemia (high blood glucose) and Hypoglycemia (low blood glucose) are two conditions that may happen for diabetes patients and they can have destructive effects on their body organs.

Medtronic has provided data collected from type 1 diabetes patients. This data was collected via a CGM (Continuous Glucose Monitoring) system as well as from fitbit. The CGM sensor is a patch, typically applied to the abdomen area, that has a small needle entering but not penetrating the skin. The sensor needs to be calibrated 3-5 times per day with the use of the standard fingerstick method. These sensors are very accurate and can help patients monitor their blood glucose in real time. In an attempt to use this data to benefit type 2 patients, Medtronic has combined CGM data and FitBit activity metrics with the goal of predicting future BG levels in real time. If this prediction can be made accurately, we can apply this method to type 2 patients who do not use a CGM system solely using fitbit and fingerstick measurements.

Project Goal

To develop a backend infrastructure to generate real time insights and predictions to be applied to type 2 patients.

Real Time Data

Overview

Real Time Purpose : To provide Real Time data streaming capability to our insight engine and prediction engine

Real Time Goal : To fully connect a real time simulator using a microservices data infrastructure with Apache Kafka, Cassandra and Storm for insights and prediction.

Progress

Kafka

- Kafka Broker, Zookeeper running on local and virtual machine
- Kafka Producer R1 Amazon S3 as a data store & Connection/packet generation to Kafka
- Kafka Producer R2 Created and Serialized data packets as JSON objects. Cast date to (date + 12:59:59) for packets without time. SG and CaloriesOut data handled.
- Kafka Producer R3 Connected to Cassandra database for mass storage and sorting of data packets. ActivityTimeSeries, CGMData, HRTimeSeries patient data handled.
- Kafka Producer R4 All patient data is handled, including log data and nutrino data.

Storm

- Storm server and zookeeper running on local and virtual machine
- Storm Kafka Spout
 - Reads stream off kafka topic
 - Implements GSON encapsulation for easy processing
- Storm Bolts
 - 1. Sort By Type
 - emits data-packets to individual streams according to the data type of the packet
 - 2. PostBolt
 - posts data packet to a specified URL
 - 17 streams are currently being POSTed to insight engine
 - 3. Custom Window Bolt (Windowed Feature Extraction)
 - implemented to calculate the average of sg for 30 minutes and output a packet
 - Extracting statistical features can be easily implemented now

Insight Engine API

- Jupyter notebook, python, flask, gentelella installed on virtual machine
- Python-Flask
 - Implemented routes for incoming data from the POST/RESTful Storm bolt.
 - Asynchronous task handling using a RabbitMQ server and Celery encapsulation.
 - Cassandra database insertion and dataframe aggregation
 - Data passing to Gentelella
- Gentelella A free dashboard interface template
 - Real time graphs generated and visible to user
 - Insights displayed as well

Infrastructure

5 Virtual Machines running Ubuntu Linux. Each machine running a microservice

- Kafka
- Cassandra
- Storm
- Insight
- Prediction

Database Layout

Cassandra was installed on a virtual machine. The database schema can be found in section the System Architecture section.

Prediction Engine

Prediction Engine includes the following steps:

Step 1: Data Preprocessing

The main task in this phase was converting raw data to clean data which is feasible for analysis.

• Data Cleaning

We checked the validity of all patients' data. The validated data were converted from JSON format to CSV, which is feasible for analysis. We set up and used a virtual machine to process the raw data from all patients: Number of patients processed so far: 93

• Missing Value Imputation

In the process of data cleaning, we encountered some missing values that could affect the accuracy of our prediction. We handled the missing values in two steps:

- Step1 (personalized missing value imputation): Missing values of each patient replaced by the mean of the same feature for that patient.
- Step2 (overall missing value imputation): After combining the data of all patients together, again we replaced the remaining missing values by the mean of the same feature, but this time for all patients. This way we could handle all the missing values of all patients.

• Normalization

Since features have different ranges and units, we used Scikit Learn normalization routines to standardize the data for next steps.

Step 2: Feature Extraction

Average of SG within every 30 minute is considered as a data sample. Three different time windows have been used to extract features for each data sample from each data component: mean of past 30-minute, past 2-hour, and past 6-hour for every data component.

Overall, 92 features extracted for EVERY 30 minutes of every patient data. 194,891 data samples generated from 93 patients. So, the size of feature table is 194,891 by 92.

Step 3: Feature Selection

Feature selection methods have been used to identify and remove unneeded, irrelevant and redundant attributes from data that have destructive impact on accuracy of the model. Apart from removing irrelevant features, we tried to find the best combination, which can lead to the higher accuracy. Having this in mind, we calculated the correlation between each feature and the target, and then sort the features based on feature correlation with the target. Then, we made our feature combinations by choosing features from sorted list in order and according to their correlation.

The figure below shows all feature correlations with each other:

Correlation coefficient between all features and SG

SG-Mean	1.000000	minutes_FatBurn_6Hours	0.034271
Mbg-original_2Hours	0.573757	CalOut_FatBurn_6Hours	0.034159
Mbg-Mean	0.477063	BMI_2Hours	0.032177
Mbg-original	0.444299	BMI_6Hours	0.032170
Mbg-original 6Hours	0.443066	BMI	0.032168
Mbg-Mean_2Hours	0.397805	Weight_2Hours	0.026356
Heartrate-Mean * Mbg-Mean	0.323618	Weight	0.026350
Mbg-Mean_6Hours	0.292017	Weight_6Hours	0.026348
CaloriesOut-Mean * Mbg-Mean	0.247940	AgeOnset	0.025644
Time	0.063062	CaloriesOut-Mean	0.025568
Heartrate-Mean_2Hours	0.053866	CaloriesOut-Mean_2Hours	0.022198
water	0.048077	minutes_OutOfRange	0.021927
water_2Hours	0.047904	minutes_OutOfRange_2Hours	0.021384
water_6Hours	0.047399	minutes_OutOfRange_6Hours	0.020235
Heartrate-Mean	0.047297	CaloriesOut-Mean_6Hours	0.018981
Heartrate-Mean_6Hours	0.045926	YearsOnInsulin	0.018008
min_FatBurn	0.045072	CalOut_Cardio	0.017875
max_OutOfRange	0.045072	CalOut_Cardio_2Hours	0.017693
min_FatBurn_2Hours	0.045070	CalOut_Cardio_6Hours	0.017427
max_OutOfRange_2Hours	0.045070	Fat_6Hours	0.015488
max_OutOfRange_6Hours	0.045065	CalOut_OutOfRange	0.015004
min_FatBurn_6Hours	0.045065	Fat_2Hours	0.014952
max_FatBurn_2Hours	0.044508	Fat	0.014731
min_Cardio_2Hours	0.044508	CalOut_OutOfRange_2Hours	0.014551
max_FatBurn	0.044508	CalOut_OutOfRange_6Hours	0.013630
min_Cardio	0.044508	Sex_M	0.012672
max_FatBurn_6Hours	0.044507	Sex_F	0.012672
min_Cardio_6Hours	0.044507	minutes_Cardio_6Hours	0.010344
max_Cardio	0.044347	Steps-Mean	0.010215
min_Peak	0.044347	minutes_Cardio_2Hours	0.009721
max_Cardio_2Hours	0.044347	minutes_Cardio	0.009357
min_Peak_2Hours	0.044347	Mbg-MeantimeDif(min)	0.009191
max_Cardio_6Hours	0.044345	pid	0.008358
min_Peak_6Hours	0.044345	Month	0.007902
Calories	0.042081	CalOut_Peak	0.005684
Calories_2Hours	0.041780	CalOut_Peak_2Hours	0.005352
Calories_6Hours	0.041701	CalOut_Peak_6Hours	0.003953
Age	0.041599	minutes_Peak	0.002105
DIABETES_TYPE	0.036832	minutes_Peak_2Hours	0.001729
minutes_FatBurn_2Hours	0.034903	Day	0.001630
minutes_FatBurn	0.034762	Steps-Mean_6Hours	0.000827
CalOut_FatBurn_2Hours	0.034500	Steps-Mean_2Hours	0.000820
CalOut_FatBurn	0.034346	minutes_Peak_6Hours	0.000472

Step 4: Dimensionality Reduction

Using PCA, we tried to check how the dimensionality reduction can reduce our error and improve our accuracy. Again, for dimensionality reduction, we calculate the optimum number of features that could lead to minimum error and highest accuracy.

Step 5: Prediction using Machine Learning Algorithms

The total number of data samples after combining all 93 patients' data is 194,891. Random Forest and Neural Network algorithms were used for training/prediction.

Insight Engine

Overview

Automatically create insights based on each individual patient. And display graphs and helpful tips to the user in real time.

Step 1: Data Preprocessing

Refer to Prediction Engine steps for details.

Step 2: Feature Extraction

Refer to Prediction Engine steps for details.

Step 3: Hyper and Hypo events and its Durations

- The team had worked with graphs to check if the data was viable. We had looked at Sensor Glucose and Hyper and Hypo events. Next used these events and created durations of these Hyper and Hypo events. The start of an event was after 15 minutes over or under the allotted hyper and hypo conditions. The end of an event is marked when they are within the normal SG range for at least 10 minutes.
- Medtronic team conveyed the need to have a correlation with the outcomes and to develop insights based on rankings. The purpose is to look for insights instead of having static values do it. The prediction engine team helped come up with top-ranked features for the insights.

Correlation between all features versus Hyper Count

Hyper Count 1.000000 Hyper Duration 0.431635 SG-Mean 0.310531 Mbg-original_2Hours 0.275118 Mbg-original 0.256415 Mbg-original_6Hours 0.246400 Mbg-Mean 0.233512 Mbg-Mean_2Hours 0.225431 Heartrate-Mean * Mbg-Mean 0.215299 Mbg-Mean_6Hours 0.213062 CaloriesOut-Mean * Mbg-Mean 0.138313 Hypo Duration 0.121694 Hypo Count 0.098516 Age 0.057546 Month 0.057424 min_FatBurn 0.053351 max OutOfRange 0.053351 max_OutOfRange_2Hours 0.053347 min_FatBurn_2Hours 0.053347 max_OutOfRange_6Hours 0.053336 min_FatBurn_6Hours 0.053336 min_Peak 0.052268 max_Cardio 0.052268 min_Peak_2Hours 0.052264 max_Cardio_2Hours 0.052264 min_Peak_6Hours 0.052254 max Cardio 6Hours 0.052254 max_FatBurn 0.051720 min_Cardio 0.051720 max_FatBurn_2Hours 0.051717 min_Cardio_2Hours 0.051717 max_FatBurn_6Hours 0.051707 min_Cardio_6Hours 0.051707 Heartrate-Mean_2Hours 0.049406 Heartrate-Mean 0.048752 Mbg-MeantimeDif(min) 0.043732 Heartrate-Mean_6Hours 0.042514 CalOut_Cardio_6Hours 0.037525 Sex_M 0.036586 Sex_F 0.036586 Calories_6Hours 0.035799 CalOut_Cardio_2Hours 0.035361 CalOut_Cardio 0.034803 Calories_2Hours 0.034656 Calories 0.034111

Time 0.033559 AgeOnset 0.028995 BMI 0.028681 BMI_2Hours 0.028667 BMI 6Hours 0.028634 minutes_OutOfRange_6Hours 0.028103 DIABETES_TYPE 0.027847 minutes_OutOfRange_2Hours 0.026742 minutes_OutOfRange 0.026030 Steps-Mean_2Hours 0.025725 Steps-Mean 0.025655 CalOut_OutOfRange_6Hours 0.024711 CalOut_OutOfRange_2Hours 0.023800 CalOut_OutOfRange 0.023253 minutes_Cardio_6Hours 0.022912 minutes_Cardio 0.022019 water_6Hours 0.021795 minutes_Cardio_2Hours 0.021674 water_2Hours 0.021277 YearsOnInsulin 0.021087 water 0.021011 CaloriesOut-Mean 0.020178 Steps-Mean 6Hours 0.020009 pid 0.019381 CaloriesOut-Mean_2Hours 0.017865 CalOut_FatBurn 0.017303 CalOut FatBurn 6Hours 0.017292 CalOut_FatBurn_2Hours 0.017282 Weight 0.014860 Weight_2Hours 0.014846 Weight_6Hours 0.014811 minutes_Peak_6Hours 0.013256 minutes_Peak_2Hours 0.013133 minutes_Peak 0.013079 Fat 0.012316 Fat_2Hours 0.012006 CaloriesOut-Mean_6Hours 0.011286 Fat_6Hours 0.011177 CalOut_Peak 0.010754 CalOut_Peak_2Hours 0.010721 CalOut_Peak_6Hours 0.010670 minutes_FatBurn 0.004471 minutes_FatBurn_2Hours 0.004396 minutes_FatBurn_6Hours 0.004360 Day 0.002044

Correlation between all features versus Hypo Count

Hypo Count 1.000000 Hypo Duration 0.731197 SG-Mean 0.421450 Mbg-original_2Hours 0.341226 Mbg-original_6Hours 0.317096 Mbg-original 0.311218 Mbg-Mean 0.293565 Mbg-Mean_2Hours 0.289629 Mbg-Mean_6Hours 0.281933 Heartrate-Mean * Mbg-Mean 0.250806 CaloriesOut-Mean * Mbg-Mean 0.198811 Hyper Duration 0.187984 AgeOnset 0.147907 Weight_6Hours 0.127137 Weight_2Hours 0.127105 Weight 0.127099 BMI_6Hours 0.116156 BMI_2Hours 0.116113 BMI 0.116105 Hyper Count 0.098516 CalOut_Cardio_6Hours 0.077406 CalOut_Cardio_2Hours 0.076880 CalOut Cardio 0.075997 DIABETES_TYPE 0.070882 Age 0.068596 Calories_6Hours 0.063326 Calories_2Hours 0.062981 Calories 0.062773 CalOut_FatBurn_6Hours 0.062291 CalOut_FatBurn_2Hours 0.060936 max OutOfRange 0.060906 min_FatBurn 0.060906 min_FatBurn_2Hours 0.060904 max_OutOfRange_2Hours 0.060904 max OutOfRange 6Hours 0.060899 min_FatBurn_6Hours 0.060899 max_Cardio_6Hours 0.060340 min_Peak_6Hours 0.060340 min_Peak_2Hours 0.060338 max_Cardio_2Hours 0.060338 max_Cardio 0.060337 min_Peak 0.060337 CalOut_FatBurn 0.060321 max_FatBurn_6Hours 0.059479 min_Cardio_6Hours 0.059479

min_Cardio_2Hours 0.059476 max_FatBurn_2Hours 0.059476 max_FatBurn 0.059474 min_Cardio 0.059474 minutes_FatBurn_6Hours 0.055804 CaloriesOut-Mean 0.055359 CaloriesOut-Mean_2Hours 0.055166 CaloriesOut-Mean_6Hours 0.055156 minutes_FatBurn_2Hours 0.054778 minutes_FatBurn 0.054273 Heartrate-Mean_6Hours 0.050197 Heartrate-Mean_2Hours 0.049653 pid 0.048975 YearsOnInsulin 0.046731 Heartrate-Mean 0.045480 minutes_Cardio_2Hours 0.040657 minutes_Cardio_6Hours 0.040449 minutes_Cardio 0.039456 water_6Hours 0.033378 water 2Hours 0.032130 water 0.031573 minutes_Peak_6Hours 0.025838 Sex F 0.025417 Sex_M 0.025417 minutes_Peak_2Hours 0.025126 minutes_Peak 0.024746 Month 0.021438 minutes_OutOfRange 0.020827 CalOut_Peak_6Hours 0.020706 minutes_OutOfRange_2Hours 0.020434 CalOut Peak 2Hours 0.019852 minutes_OutOfRange_6Hours 0.019613 CalOut_Peak 0.019429 Fat_6Hours 0.016383 Fat 2Hours 0.015997 Fat 0.015847 Mbg-MeantimeDif(min) 0.014794 Time 0.012412 Day 0.009421 CalOut_OutOfRange 0.005153 CalOut_OutOfRange_2Hours 0.004787 CalOut_OutOfRange_6Hours 0.004017 Steps-Mean_2Hours 0.002433 Steps-Mean_6Hours 0.001965 Steps-Mean 0.000785

Correlation between all features versus Hyper Duration

Hyper Duration 1.000000 SG-Mean 0.692502 Mbg-original_2Hours 0.544804 Mbg-original_6Hours 0.538946 Mbg-Mean 0.506610 Mbg-Mean_2Hours 0.496731 Mbg-Mean_6Hours 0.476087 Mbg-original 0.472885 Hyper Count 0.431635 Heartrate-Mean * Mbg-Mean 0.353218 CaloriesOut-Mean * Mbg-Mean 0.274696 Hypo Count 0.187984 Hypo Duration 0.145295 water_6Hours 0.135587 water_2Hours 0.134185 water 0.133537 Calories 6Hours 0.120432 Calories_2Hours 0.117385 Calories 0.116116 Fat_6Hours 0.080596 Fat 2Hours 0.080294 Fat 0.080171 Age 0.056223 AgeOnset 0.056146 DIABETES_TYPE 0.055858 min_FatBurn 0.050613 max OutOfRange 0.050613 min_FatBurn_2Hours 0.050608 max_OutOfRange_2Hours 0.050608 min_FatBurn_6Hours 0.050595 max_OutOfRange_6Hours 0.050595 min_Cardio 0.046609 max_FatBurn 0.046609 max_FatBurn_2Hours 0.046607 min_Cardio_2Hours 0.046607 max_FatBurn_6Hours 0.046601 min_Cardio_6Hours 0.046601 max_Cardio 0.046491 min_Peak 0.046491 max_Cardio_2Hours 0.046489 min_Peak_2Hours 0.046489 max Cardio 6Hours 0.046482 min_Peak_6Hours 0.046482 Mbg-MeantimeDif(min) 0.044810 pid 0.039475

minutes_OutOfRange_6Hours 0.038470 minutes_OutOfRange_2Hours 0.037353 minutes_OutOfRange 0.036744 CalOut_OutOfRange_6Hours 0.033769 CalOut_OutOfRange_2Hours 0.032954 CalOut_OutOfRange 0.032469 minutes_FatBurn 0.029872 minutes_FatBurn_2Hours 0.029626 minutes FatBurn 6Hours 0.028762 minutes_Cardio_6Hours 0.027699 minutes_Cardio_2Hours 0.026140 YearsOnInsulin 0.025135 minutes Cardio 0.024605 CalOut_Cardio_6Hours 0.021700 CalOut_FatBurn 0.021149 CalOut_FatBurn_2Hours 0.021038 CalOut_Cardio_2Hours 0.020832 CalOut_FatBurn_6Hours 0.020643 CalOut Cardio 0.020610 minutes_Peak_6Hours 0.018607 Steps-Mean 2Hours 0.018088 Steps-Mean 0.017730 minutes Peak 2Hours 0.017122 minutes_Peak 0.016613 Steps-Mean_6Hours 0.013075 CalOut_Peak_6Hours 0.012212 CaloriesOut-Mean 0.012098 Month 0.011733 CalOut_Peak_2Hours 0.010963 Weight 0.010809 Weight_2Hours 0.010809 Weight_6Hours 0.010801 CaloriesOut-Mean_2Hours 0.010692 CalOut_Peak 0.010555 Time 0.008511 Heartrate-Mean_6Hours 0.007365 Heartrate-Mean 0.007042 CaloriesOut-Mean_6Hours 0.005716 Day 0.005536 Heartrate-Mean_2Hours 0.004728 BMI 0.003520 BMI 2Hours 0.003515 BMI_6Hours 0.003512 Sex_F 0.002467 Sex_M 0.002467

Correlation between all features versus Hypo Duration

Hypo Duration 1.000000 Hypo Count 0.731197 SG-Mean 0.408548 Mbg-original_2Hours 0.301977 Mbg-original_6Hours 0.279004 Mbg-original 0.278180 Mbg-Mean 0.261168 Mbg-Mean_2Hours 0.259692 Heartrate-Mean * Mbg-Mean 0.259385 Mbg-Mean_6Hours 0.255682 CaloriesOut-Mean * Mbg-Mean 0.182910 Hyper Duration 0.145295 AgeOnset 0.140298 Hyper Count 0.121694 Weight_6Hours 0.120359 Weight_2Hours 0.120323 Weight 0.120314 Heartrate-Mean_2Hours 0.111968 Heartrate-Mean 6Hours 0.110892 Heartrate-Mean 0.107818 BMI 6Hours 0.103070 BMI_2Hours 0.103022 BMI 0.103010 CalOut_Cardio_6Hours 0.088860 CalOut_Cardio_2Hours 0.087657 CalOut_Cardio 0.086518 DIABETES TYPE 0.074203 YearsOnInsulin 0.072232 CalOut_FatBurn_6Hours 0.068676 CalOut_FatBurn_2Hours 0.067250 CalOut_FatBurn 0.066573 Calories_6Hours 0.063848 Calories_2Hours 0.062819 Calories 0.062352 minutes_FatBurn_6Hours 0.061382 minutes_FatBurn_2Hours 0.060271 minutes_FatBurn 0.059732 CaloriesOut-Mean 0.057464 CaloriesOut-Mean_6Hours 0.056987 CaloriesOut-Mean_2Hours 0.056901 Fat_6Hours 0.052408 Fat 2Hours 0.052045 Fat 0.051901 minutes_Cardio_6Hours 0.051148 minutes_Cardio_2Hours 0.050951

minutes_Cardio 0.049625 Age 0.036157 minutes_Peak_6Hours 0.032716 Time 0.032566 Month 0.032027 min_FatBurn 0.031883 max_OutOfRange 0.031883 max_OutOfRange_2Hours 0.031880 min FatBurn 2Hours 0.031880 min_FatBurn_6Hours 0.031870 max_OutOfRange_6Hours 0.031870 minutes_Peak_2Hours 0.031474 min Peak 6Hours 0.030957 max_Cardio_6Hours 0.030957 max Cardio 2Hours 0.030946 min_Peak_2Hours 0.030946 minutes Peak 0.030943 max_Cardio 0.030941 min Peak 0.030941 max_FatBurn_6Hours 0.029741 min Cardio 6Hours 0.029741 max_FatBurn_2Hours 0.029726 min_Cardio_2Hours 0.029726 max_FatBurn 0.029720 min_Cardio 0.029720 water_6Hours 0.028651 water 2Hours 0.028355 water 0.028185 CalOut_Peak_6Hours 0.026589 CalOut_Peak_2Hours 0.025184 CalOut_Peak 0.024607 Steps-Mean 0.020370 Steps-Mean_6Hours 0.018771 Steps-Mean_2Hours 0.017819 Day 0.016473 Sex_F 0.016092 Sex_M 0.016092 pid 0.015868 Mbg-MeantimeDif(min) 0.011338 CalOut_OutOfRange_6Hours 0.008168 CalOut_OutOfRange_2Hours 0.007101 CalOut_OutOfRange 0.006633 minutes_OutOfRange 0.004345 minutes_OutOfRange_2Hours 0.003815 minutes_OutOfRange_6Hours 0.002597

Step 4: Automating Insights

- Medtronic Data Science team has specified and communicated what type of automation they wanted. We discussed graphs on hyper/hypo events and their durations. We then created insights using these features. These features include hyper/hypo durations with sleep duration, step count and calories out.
- We have created an algorithm for automating our insights. Each column on the graphs is automatically generated based on the data of each individual patient.
- As you can see from the sample graphs and insights automatically generated below, the value of each bar is based on either the number of steps a day, amount of sleep overnight, and calories outputted daily of the patient. The outcome is that the insights suggest the patient take certain steps in order to lower their duration spent in Hyperglycemia per day.

Hi, when you have more than 6.5 Hours of Sleep overnight, a day, you will get 30% reduction in Hyper Duration!

Hi, when you have more than 2156.0 Calories Out a day, a day, you will get 30% reduction in Hyper Duration!

Hi, when you have more than 4609.0 Steps a day, a day, you will get 30% reduction in Hyper Duration!

System Architecture

Data Flow

Database Schema

Keyspace: insightDB time_series generated_features activity_log_data ΡK ts double ΡK ts double ΡK patient_id int ΡK unique uuid ΡK unique uuid ΡK start_time double metric_group text metric_group text activity_id int metric_id text activity_parent_id int metric_id text patient_id int calories int patient_id int value double value double description text distance int nutrino_data sleep_log_data has_start_time Boolean ΡK patient_id int ΡK patient id int distance int ΡK ΡK dt double start_time double duration int foodsource_type_name text awake_count int has_start_time Boolean dish_preparation_type text awake_duration int serving_amount double is_favourite Boolean awakenings_count int log_id int display_name text duration int name text protein double efficiency int saturated_fatty_acids double is_main_sleep Boolean steps int activity_date double trans_fatty_acids double minutes_after_wakeup int carb double minutes_asleep int personal data lipids double minutes_to_fall_asleep int ΡK patient_id int energy double minutes_awake int age_range int sodium double restless_count int age int sugars double restless_duration int sex text fibers double tine_in_bed int gender text insight_data years_on_insulin int PK ts double age_onset int ΡK patient_id int diagnosis float insight_id int diabetes_type int patient_id int insight varchar X_metric_id text Y_metric_id text X_metric_val float Y_metric_val float

Conclusion and Results

After combining the real time engine with both the Prediction Engine and the Insight Engine, we have completed a Gentelella dashboard:

Nutrino Data Radar Chart

