

Program Review Information System

Management (PRISM)

Team: Leanne David, Andrew McLees, Justin Sarenas, Ben Solis

Advisor: Dr. Chengyu Sun

Liaisons: Dr. Brown and Veronica Ramirez from

the CSULA office of Graduate Studies

Table of Contents

1. Introduction

2. Related Works and Technologies

3. System Architecture

4. Results and Conclusions

5. References

Chapter 1. Introduction

The sponsor of the PRISM project was the Office of Graduate Studies at California State
University, Los Angeles (CSULA). Program review at CSULA is a complex process not supported
by specialized software prior to the development of PRISM, thus, PRISM was envisioned as a
way to streamline the review process. In short, it involved college deans, department chairs,
program review subcommittee (PRS) members, and administrators collaborating on a number
of documents. The process is highly asynchronous and fluidic; many reviews occur
simultaneously and each review may have several documents in progress simultaneously.
Additionally, deadlines for documents change often throughout the process. See chapter 2 of
the PRISM Software Requirement Specification (SRS, see references for a hyperlink) for more
details on the review process.

The existing solution to conducting the program review process was driven not by
dedicated software, but by a combination of word-processing software and email. The complex
nature of the review process made this collaboration difficult and confusing, particularly for
new PRS members.

PRISM is a full-stack web application designed to streamline the review process at
CSULA. It provides convenient representation, storage, and transmission of data within all
reviews conducted and the tools to manipulate the data. The essential requirements of the
system, as summarized in the PRISM SRS, are:

● Track and provide an interface to view the progress of each review as it proceeds
through the review process

● Store, track the progress of, and allow collaboration on review documents
● Store and automatically source new documents from review document templates
● Store meeting agendas and minutes
● Maintain a calendar of PRS meetings and send email notifications upon changes
● Track which programs are due for review
● Send email notifications upon events relevant to the user

PRISM was implemented as a MEAN (Mongoose Express Angular Node) stack

application. It consists of an HTTP API based on RESTful principles and a single-page client-side
web application. It meets the requirements listed above and will be used starting during the
academic year of 2018-2019 at CSULA.

The core benefits of PRISM are centralization of all review information, simpler
management of review workflows for administrators, and automations of notifications and
coordination previously conducted via email.

Chapter 2. Related Works and Technology

During the initial stages of PRISM's development, it was determined that a web

application would best meet the needs of the Program Review Subcommittee. A web

application provides:

● Centralization and reliable data storage in a proper database

● Simple deployment - only one server must be deployed to run the application

● Existing resources for User Interface (UI) development

With a web application in mind, the next decision to be made was the software ecosystem.

Though much of the development team lacked extensive experience in JavaScript, it was

chosen as the primary language for development across the entire stack. Chapters 2, 3, and 4 of

Appendix II. Software Design Document detail this choice further.

Review processes at many other universities, similarly to the CSULA program review

process prior to the introduction of PRISM, depend largely on traditional document sharing via

email and coordination via a set of hard deadlines set by those involved. This lack of similar

systems led the team to examine the design of software accomplishing similar goals. One

example is GitHub, an online host for Git repositories. GitHub, similarly to PRISM, provides tools

for workflow management and hosts source-control repositories (similarly to how PRISM stores

all versions of all documents as they are developed). The design of GitHub is similar to PRISM

not only in versioning documents, but also in the way both systems display action feeds and

collections of documents on their respective front pages. The figure below depicts the GitHub

action feed.

Appendix I. Software Requirements Document Chapter 1.5 contains more details of resources

consulted during the design and implementation of PRISM.

Chapter 3. System Architecture

The overall system was split into three categories of modules: frontend modules that

run on the client side, backend modules running on the server, and a static server to serve the

client-side code. This distinction was made to simplify development: the frontend and backend

can be developed simultaneously with relative ease once the REST API has been specified.

The server was split into a variety of interconnected modules to effectively meet the

requirements of the system. The reason for the large number of modules is to meet the

single-responsibility principle, which states that each module should have a single

responsibility. Having separate modules for different functionality makes development and

testing each module easier, and thus each module was chosen to perform a specific set of

functions corresponding to the requirements for the system.

Data Module
This module handles all the data interactions within the server. This connects all the modules
together.

Review Manager

The review manager tracks all the states of the review. The review contains a nodes object with
all the deadlines pertaining to the review. Administrators are able to extend deadlines. This
module works with the email module in order to send notifications to relevant users of
upcoming deadlines or completed documents.

Calendar Event Manager

This module tracks all the PRS meetings and events. Meetings and events can be created and
scheduled on a calendar. This module works with the e-mail module in order to send out
notifications of upcoming meetings and events.

Miscellaneous Resource Manager

This module handles all files accessible to everyone on PRS. This module interacts with the file
storage module for the upload and download of files.

Document Manager

This module handles all files and revisions related to the review. Users will be able to upload
revisions to a document. Administrators will be able to delete and restore to a previous
revision.

Template Manager

This module handles the templates used in the reviews. Users will be able to download these
templates.

File Storage

This module handles all file storage actions within the system. This module utilizes multer for
file uploads to the server. File uploads are limited to extensions doc, docx, and pdf.

E-mail

This module handles all e-mail functionality within the backend. Automated e-mails are sent
out when an event is triggered such as an upcoming deadline, meeting, document deadline,
and etc. There are custom templates that correspond with the type of e-mail being sent out.

This module utilizes three packages named nodemailer, cron, and
nodemailer-express-handlebars for ease of implementation.

Configuration

This module handles all user settings. Users may select to subscribe to a review for notifications
regarding deadlines.

Authentication

This module handles authentication to access the software. Users will be able to log in and
access the site using their CSULA credentials. Users will be given a token which will allow access
to the different endpoints as each endpoint requires a token.

Access Control

This module handles all access control within the system. Users will only see data they are
allowed access to. Access control consists of groups which have different privileges to certain
data. Administrators are able to add or remove users in those groups.

Chapter 4. Results and Conclusions

Results

PRISM is a complete web application that contains 80 endpoints, intricate data models,

a RESTful-esque api, and a user-friendly interface. The majority of the endpoints

implementation were completed in the winter; which allowed the front-end team to initiate the

development of the user interface in a timely manner. The data models required custom

validation modules and useful error handling code that logs errors and facilitates the debugging

process. The user interface implementation was completed in the end of the academic year;

which utilized a great amount of time for testing. The interface provides the user a standard

navigation bar to facilitate the access to different components of the system. The elegance of

the system’s user interface is derived from a meticulous approach to its design. As one can see

in the screenshots below, the user interface has a pleasant color schema and an intuitive

layout.

Screen Frameworks or Images
Login Component
User enters their login credentials, typically their Cal State LA information, to log into the
system.

Dashboard

Active Reviews Tab
Tab consists of current active reviews the user has a role in. As an Administrator, they are
allowed to edit lead reviewers, add and delete reviews.

Review Archive Tab
Tab consists of previously completed reviews for archival purposes. Users may look at previous
reviews as a template for an ongoing review.

Recent Actions tab
Tab displays all the recent actions users have taken within the system such as file uploads,
updates, and deletions.

Calendar Component
Tab displays a calendar with upcoming events complete with email notifications.

University Hierarchy Component
Tab consists of the hierarchy at CSULA. Users will be able to navigate through the different
colleges, departments, and programs.

Resources Component

Tab consists of additional resources of documents users may need.

Group Manager Component
Tab consists of access control for the system. Administrators are able to add and remove users
from groups. Groups restrict access to certain data within the system.

Template Manager Component

Tab consists of templates for previous reviews which users are able to download.

Settings Component
Tab consists of user configurations which users will be able to edit such as their name, email,
and password.

Review Component

Document Component - Main Version Tab
Tab consists of the program review process. The main version displays the current accepted
revision.

Document Component - Previous Revisions Tab
Tab displays all previous revisions that were uploaded. Administrator can delete and revert a
previous revision as the current one.

Document Component - Comments Tab
Tab displays the comments that are made by users under a certain document revision.

Document Component - Create External Upload Model
Tab displays form where administrators will be able to fill out in order to let an external
reviewer access the site and upload their document.

External Upload Component
Page which allows external reviewers to upload their document.

Conclusion

PRISM is a web application developed for the PRS to use in order to streamline the
processing of program reviews. The system was built using the MEAN stack; which is a popular
trend for web app development, since its use of only one programming language, Javascript,
throughout the stack makes development in a short time frame feasible. The system was split
into three categories of modules: frontend modules that run on the client side, backend
modules running on the server, and a static server to serve the client-side code. Furthermore,
the server was split into a variety of interconnected modules to effectively meet the
requirements of the project.

The main highlight of this project is the success of the review graph that was

implemented with major challenges. Its implementation entailed adapting the d3.js library into

the Angular platform. Another important highlight in the project is the success of using the

ng-bootstrap library to replace the problematic PrimeNG library midway through the front-end

development. PrimeNG failed to be the reliable user interface suite for Angular and made

front-end development unreasonably difficult. The interaction between PRISM and shibboleth

was not implemented due to administrative difficulties with the Cal State LA networking

authorities.

The most important follow-up work this project needs is the implementation of

adopting shibboleth for user authorization. This would allow users to sign in with their existing

Cal State LA credentials. A useful add-on to incorporate into PRISM is a real-time in-browser

document editor utilizing WebSockets. This would allow users to work on only one document

until it is finalized; rather than working on different versions of the same document. Another

useful capability to add on would be the customization of the review graph. This feature would

allow the users to generate a review graph that reflects a more detailed level of the review

process.

Chapter 5. References
The PRISM SRS and SRD were both references heavily in the creation of this document.

The intent of this document is to consolidate the various materials about PRISM into a single

document.

Andrew McLees's Honors College thesis on PRISM was referenced heavily in the writing

of chapter 2 as it had similar goals to this document.

