

Software Design

Document

for

Program Review Information
System Management

Version 2.0 approved

Prepared by

David, Leanne
McLees, Andrew

Sarenas, Justin
Solis, Ben Jair

For Graduate Studies at California State University, Los Angeles

April 14, 2018

Table of Contents...2
Revision History...
3

1. Introduction..4
1.1. Purpose...4
1.2. Document Conventions……………………... 4
1.3. Intended Audience and Reading Suggestions..4
1.4. System Overview...5

2. Design Considerations... 6
2.1. Assumptions and dependencies... 6
2.2. General Constraints..6
2.3. Goals and Guidelines...7
2.4. Development Methods... 7

3. Architectural Strategies..8
4. System Architecture...10
5. Policies and Tactics..13

5.1. Specific Products Used.. 13
5.2. Requirements traceability...

13
5.3. Testing the software...13

6. Detailed System Design...14
7. Detailed Lower level Component Design..15
8. User Interface...16
9. Database Design...17

10. Requirements Validation and Verification...
19

11. Glossary... 20
12. References... 20

Revision History

Name Date Reason For Changes Version

 Initial Version 12/8/2017 1

 Final Version 4/14/2018 Completion of project 2

1. Introduction

1.1 Purpose
The purpose of this document is to describe the implementation details of the Program Review
Information System Management (PRISM) as described in the Software System Requirements
for Program Review Information System Management. This document describes the entire
system and its implementation in detail.

1.2 Document Conventions
This document is formatted according the CSULA Computer Science department's 2017-2018
senior design software design document template.

1.3 Intended Audience and Reading Suggestions
This document is intended for individuals directly involved in the development of PRISM. This
includes software developers, team managers, testers, and documentation writers. This document
does not need to be read sequentially; users are encouraged to jump to any section they find
relevant. Below is a brief overview of each part of the document.

● Part 1 (Introduction)
○ This section offers an overview of PRISM.

● Part 2 (Design Considerations)
○ Readers interested in the considerations accounted for while designing the system

should consult this section.
● Part 3 (Architectural Strategies)

○ This section describes the design decisions and strategies used for the
organization of the system and its higher-level structures.

● Part 4 (System Architecture)
○ This section provides a high-level overview of how the functionalities and

responsibilities of the system were partitioned and then assigned to components.
● Part 5 (Policies and Tactics)

○ This section discusses any relevant political or tactical decisions made and the
judgement used behind these decisions.

● Part 6 (Detailed System Design)
○ This section discusses the lower-level details of the system. Each system

component is described in detail and may have an accompanying DFD.
● Part 7 (Detailed Lower Level Component Design)

○ This section discusses other lower-level details: components and subcomponents.
● Part 8 (Database Design)

○ This section covers all of the details related to the schema of the database.
● Part 9 (User Interface)

○ This section covers all of the details related to the structure of the graphical user
interface (GUI). Readers can view this section for a tentative glimpse of what the
final product will look like.

● Part 10 (Requirements Validation and Verification)

○ This section details the requirements and the methods used to test that these
requirements are met.

● Part 11 (Glossary)
○ Readers unfamiliar with software engineering terminology should consult this

section.
● Part 12 (References)

○ This section includes any additional information which may be helpful to readers.

1.4 System Overview
PRISM is a workflow management tool including an optimized document storage and
management system where users will be able to store and download all files related to program
reviews.

PRISM is a full-stack web application that is accessed via a web browser. The system can be
broken up into its backend and frontend side. The frontend side of the system provides users with
an interface for PRISM; functionalities and user input are handled directly here. Whereas the
backend side of the system offers CRUD operations on data in the database.

The following list summarizes the major functions of the system.

● Track and provide an interface to view the progress of each review as it proceeds through
the review process

● Store, track the progress of, and allow collaboration on review documents
● Store and automatically source new documents from review document templates
● Store meeting agendas and minutes
● Maintain a calendar of PRS meetings and send e-mail notifications upon changes
● Track which programs are due for review
● Send e-mail notifications upon events relevant to the user

2. Design Considerations

2.1 Assumptions and Dependencies

The following assumptions are being made in the design of PRISM.

● There will be a server capable of running the following software in accordance with the
performance requirements of the software:

○ A MEAN stack as specified in section 3 of this document.
○ An e-mail server

● The server will be running a distribution of GNU/Linux
● The server will have sufficiently powerful hardware such that PRISM will not need to

undergo extensive optimization to meet performance requirements
● The end users of this software will be limited to:

○ External reviewers
○ CSULA College Deans
○ CSULA Department Chairs
○ PRS members
○ PRS committee chairs/Provost appointees (Administrators)

2.2 General Constraints

End-user Environment
The browsers used by end-users must be supported. This will require additional E2E

testing and polyfills in the Angular application to support certain browsers specified in the SRS.

Review Process
The review process has many irregularities and exceptions in timing which must be

accounted for in designing time-based parts of the system.

Testing
Testing will be used to ensure reliable and quality of the software. The goal of testing

will encourage splitting functionality into smaller modules.

Network Communication
The Angular application will communicate with the server via a REST API. This makes

design of the REST API important.

Authentication with CSULA Credentials
As the system must allow users to log in with CSULA credentials, PRISM will need to

interface with the university's Shibboleth identity provider server via SAML. This implies certain
changes in the user model and the authentication flow.

2.3 Goals and Guidelines

Delivery by the End of the Senior Design Class
The PRS expects the software to be completed in time for it to be used as a part of the

2018-2019 program review process. This will require faster development methods to be utilized.

Emphasis on Simplicity

The user count of the software is likely to never reach 50 concurrent users. This means
that performance on the server side will not be a large issue. If faced with situations such as
authentication or development of the REST API where access list control or pagination could
potentially increase complexity but improve performance or functionality not specified in the
requirements, the functionality will only be implemented after all requirements are met. This
emphasis is based on the notion that keeping the software simple will speed development.

Colors

As web developers, we believe color to be a critical component of any web application.
As such, before designing a UI component, we ask ourselves: "What colors best illustrate the
actions being performed?" We also consider look-and-feel consistency across the web to be
important, so we chose to use Twitter Bootstrap as a basis for our UI color toolbox, taking
advantage of its colors' position as the lingua franca of the modern web.

2.4 Development Methods

Due to the project's developers being students rather than full-time developers, it was not
feasible to meet daily to discuss project progress. The project was organized into week-long
sprints (planned at weekly meetings) with ad-hoc additional meetings and information exchange
over instant messaging.

3. Architectural Strategies
Use of a particular type of product

PRISM will be using a MEAN stack which is composed of MongoDB, Express, Angular
4, and NodeJS. MongoDB will be interfaced with through Mongoose to assist with data
organization and validation. PRISM will also use Twitter Bootstrap for UI components for
Angular because it provides rich functionality integrated with Angular.

The primary alternative to a MEAN stack would have been a Java-based stack. The
decision to use a MEAN stack was ultimately made because it provides a more responsive user
experience, a more flexible software environment, and is widely used in industry. Stacks based
in other languages are also possible but lack the market share and relative ease-of-configuration
present in the options considered.

Reuse of existing software components to implement various parts/features of the system

We will not be reusing existing software components to implement various part/features of the
system.

Future plans for extending or enhancing the software

Future plans for PRISM may include but are not limited to:

● A real time collaborative text editor

User interface paradigms (or system input and output models)

PRISM will be accessible through the user’s web browser and will take in user input and output
the data requested.

Hardware and/or software interface paradigms

PRISM will not have any hardware paradigms. TypeScript is a programming language which
may be used to develop JavaScript applications. Javascript supports multiple programming
paradigms for ease of development.

Error detection and recovery

Error handling is an integral part of PRISM's HTTP API. All requests contain extensive
error handling for validation of user input, database failures, and other runtime exceptions. Errors
propagate from the backend to the frontend and are also handled on the frontend, providing
feedback usable by the user. All unexpected errors are logged so that any bug reports can be
thoroughly investigated.

Memory management policies

Memory management is not necessary since our server will be able to store all data related to our
system.

External databases and/or data storage management and persistence

No external databases or data storage management will be used.

Distributed data or control over a network

Distributed data will not be necessary. Control over a network is given to the administrators of
the system which they can access through their Cal State LA user login and password.

Generalized approaches to control

Access is granted by the administrators with the user’s Cal State LA credentials.

Concurrency and synchronization

PRISM will need synchronization with the commenting system in the case of two people
commenting at the same time.

Communication mechanisms

Communication is handled through the web browser.

Management of other resources

There will be no other resources that need to be managed.

4. System Architecture

DFD Level 0

The system was split into modules based on functionality corresponding to categories of
requirements (e.g. Review Manager, Calendar Event Manager, Miscellaneous Resource
Manager) and functionality that can be separated from the rest of the code base for simplicity
(e.g. Authentication, E-mail, etc.). The modules that run on the client side communicate with the
server-side modules, and most of the data processing is handled on the server side.

● 4.1.1 Data Module
○ The Data Module handles persisting data to the database and connects all other

modules.
● 4.1.2 Review Manager

○ The Review Manager tracks the state of each review.
● 4.1.3 Calendar Event Manager

○ The Calendar Event Manager tracks PRS meetings and their corresponding
meeting agendas and minutes.

● 4.1.4 Miscellaneous Resource Manager

○ The Miscellaneous Resource Manager handles files which must be made available
to all PRS members (e.g. orientation slideshows).

● 4.1.5 Document Manager
○ The Document Manager handles revisioning and comments for each document

stored in PRISM.
● 4.1.6 Template Manager

○ The Template Manager stores and provides templates for the documents involved
in reviews.

● 4.1.7 File Storage
○ The File Storage manager handles storage of files on the server filesystem.

● 4.1.8 E-mail
○ The E-mail module handles sending of e-mail to users of the system upon events

specified in the requirements occurring.
● 4.1.9 Configuration

○ The Configuration module tracks user and administrator configurations (e.g.
e-mail preferences, naming preferences, etc.).

● 4.1.10 Authentication
○ The Authentication modules provides authentication for users both through

PRISM directly and through university-provides credentials.
● 4.1.11 Access Control

○ The Access Control module determines whether a user has permission to request a
resource or perform an action.

● 4.1.12 Frontend UI Components
○ The Frontend UI Component interact directly with the user, taking actions to

execute and form data from the user.
● 4.1.13 Frontend Data Management

○ The Frontend Data Management module deals with data being sent and received
on the client side. Building the client side with Angular 4 will allow some
processing to be done on the client side to improve the user experience.

● 4.1.14 Static Server
○ The Static Server serves the client-side portion of PRISM to the user over

HTTP(S).

DFD Level 1

The overall system was split into three categories of modules: frontend modules that run
on the client side, backend modules running on the server, and a static server to serve the
client-side code. This distinction was made to simplify development: the frontend and backend
can be developed simultaneously with relative ease once the REST API has been specified.

The server was split into a variety of interconnected modules to effectively meet the
requirements of the system. The reason for the large number of modules is to meet the
single-responsibility principle, which states that each module should have a single responsibility.
Having separate modules for different functionality makes development and testing each module
easier, and thus each module was chosen to perform a specific set of functions corresponding to
the requirements for the system.

5. Policies and Tactics

5.1 Choice of which specific products used

The chosen development tools for which PRISM will be developed in are as follows:

● MEAN stack (Mongoose/MongoDB, Express, Angular 4, NodeJS)
● Atom text editor
● Angular CLI
● Clang-Format
● ESLint
● Twitter Bootstrap
● Passport

The main decision made for the software implementation was deciding whether to use Java or
JavaScript-based technologies. Ultimately JavaScript was chosen because of its flexibility and
the larger range of tools it provides. It is also used more often in current web development trends
such as JavaScript frameworks with Angular 4 and its supporting libraries compared to Java
servlets.

For writing the code, the text editor that will be used is Atom. Another text editor candidate was
neovim but was set aside due to Atom having a smaller learning curve and being simpler to
configure. Atom provides the means to download plugins to easily customize the workspace such
as clang-format for beautifying and ESLint for linting; this was another factor in choosing Atom
as the text editor for developing PRISM.

5.2 Plans for ensuring requirements traceability

Plans for tracking requirements include traversing through the list of requirements and ensuring
each case is accounted for.

5.3 Plans for testing the software
Testing the software shall be executed using two testing frameworks—Protractor and Jasmine.
Protractor is an end-to-end testing framework that uses test suites for Angular applications.
These tests execute while the software is running on the browser and perform scenarios such as a
user would. The test code shall be written using Jasmine because of the assertions and functions
it provides. Using Protractor and Jasmine seems to be a popular combination which aided in
making decisions on which testing frameworks to use.

6. Detailed System Design

6.1.1 Data Module
This module handles all the data interactions within the server. This connects all the modules
together.

6.1.2 Review Manager

The review manager tracks all the states of the review. The review contains a nodes object with
all the deadlines pertaining to the review. Administrators are able to extend deadlines. This
module works with the email module in order to send notifications to relevant users of upcoming
deadlines or completed documents. I

6.1.3 Calendar Event Manager

This module tracks all the PRS meetings and events. Meetings and events can be created and
scheduled on a calendar. This module works with the e-mail module in order to send out
notifications of upcoming meetings and events.

6.1.4 Miscellaneous Resource Manager

This module handles all files accessible to everyone on PRS. This module interacts with the file
storage module for the upload and download of files.

6.1.5 Document Manager

This module handles all files and revisions related to the review. Users will be able to upload
revisions to a document. Administrators will be able to delete and restore to a previous revision.

6.1.6 Template Manager

This module handles the templates used in the reviews. Users will be able to download these
templates.

6.1.7 File Storage

This module handles all file storage actions within the system. This module utilizes multer for
file uploads to the server. File uploads are limited to extensions doc, docx, and pdf.

6.1.8 E-mail

This module handles all e-mail functionality within the backend. Automated e-mails are sent out
when an event is triggered such as an upcoming deadline, meeting, document deadline, and etc.
There are custom templates that correspond with the type of e-mail being sent out. This module
utilizes three packages named nodemailer, cron, and nodemailer-express-handlebars for ease of
implementation.

6.1.9 Configuration

This module handles all user settings. Users may select to subscribe to a review for notifications
regarding deadlines.

6.1.10 Authentication

This module handles authentication to access the software. Users will be able to log in and
access the site using their CSULA credentials. Users will be given a token which will allow
access to the different endpoints as each endpoint requires a token.

6.1.11 Access Control

This module handles all access control within the system. Users will only see data they are
allowed access to. Access control consists of groups which have different privileges to certain
data. Administrators are able to add or remove users in those groups.

7. Detailed Lower level Component Design
Detailed lower level component design was completed alongside implementation due to

the large number of changes that will be imposed by technical issues. Due to the large number of
lower level components, they are detailed here according to the file structure of the project. Our
goal in implementation was to have the code be self-documenting where possible. The
organization of the code should be clear from the file structure, and comments are present where
unapparent problems were encountered.

Folders are denoted with a /, and files have an extension. Comments begin with a #.

● prism-api/
○ # The backend repository
○ bin/

■ www # Entry point for the application generated by Express
■ create_programs.js # Script to import Programs, Colleges, and

Departments
■ raw-programs.csv # Raw data used by the create_programs.js script
■ db_setup_development.js # Script to set up the database for development
■ db_setup_production.js # Script to set up the database for a production

environment
○ lib/

■ config/
● passport.js # Configuration file for Passport, the authentication

package used by PRISM
● settings.js # Global application settings container

■ cron/
● cronexample.js # File used as a reference when creating email cron

jobs
● document_deadline.js # Cron job for sending notifications when

documents near their deadlines
● question_notification.js # Cron job for notifying parties in the

department question exchange of a review
● index.js # Import helper

■ templates/
● # Folder for email templates

■ access.js # Contains generators for Express middleware for access control
■ action_logger.js # Handles access logging requests from endpoints
■ base_review.js # Defines the structure of a review
■ document_factory.js # Document factory
■ review_date_estimation.js

● # Estimates completion dates of nodes in a Review
● # Given n nodes in a Review, runs in O(n) time with no extra

database requests
● # O(c) memory (the Review itself is O(n))

■ review_factory.js # Review factory

● # Very database-intensive. Despite this, response times of 15ms
were measured for the route that uses it (POST /review)

■ review_node.js # Type definition for review nodes
■ subscribe_middleware_factory # Factory for middleware that lets users

subscribe to emails from any model
■ token_cache.js # API for in-memory cache of JWT tokens used to provide

more granular control over authentication tokens (expiration and
uniqueness)

■ user_factory.js # User factory
○ models/

■ # All models are defined here
■ # Models are registered with Mongoose for usage elsewhere

○ routes/
■ # All API endpoints are defined here
■ # Each file is named <name>.route.js
■ # Endpoints are registered with Express
■ # Access control is defined for each endpoint

○ specs/
■ # Automatic tests are defined here

○ .env # This file contains environmental variables for the application
○ app.js # The core of the application. It imports all modules and handles

initialization and deinitialization
○ db.js # Handles database connection setup
○ error_handler.js # Handles HTTP responses and error logging for errors from

endpoints
○ log.js # Configuration for Winston logger
○ package.json # Contains standard project metadata and dependencies
○ README.md # Readme for the project with setup information
○ teardown.js # Handles database teardown

● prism-frontend/
○ # The frontend repository
○ e2e/

■ # End to end tests
○ src/

■ # Application source code
■ app/

● calendar/ # Calendar component
● colleges/ # College, department, and program components
● committee/ # PRS member directory component
● dashboard/ # Dashboard component
● document/ # Document component
● external-upload/ # External upload component
● group-manager/ # Group manager component
● layout/

○ private/ # Layout component for authenticated users

○ public/ # Layout component for unauthenticated users
● login/ # Login component
● models/

○ # All request/response models are in this folder
● page-not-found/ # 404 page component
● resources/ # Resources component
● review/ # Review component
● review-list/ # Review list component
● settings/ # User settings component
● shared/

○ # Shared source files
○ app.global.ts # Injectable global variable container
○ filter.pipe.ts # Text filter pipe for searching an array of

objects with titles
○ shared.service.ts # Shared service for tracking the current

user and caching response data
● template-manager/ # Template manager component
● user-selector/ # User selector component

○ # Allows selection of specific users as a reusable form
element

● app-routing.module.ts # All routing configuration
● app.component.css # Application component CSS
● app.component.html # Application component HTML
● app.component.ts # Application component TypeScript
● app.module.ts # Application module definition

■ index.html # Entry point for HTML
■ main.ts # Entry point for application
■ styles.css # Global CSS

○ package.json # Contains standard project metadata and dependencies

8. Database Design
See the PRISM requirements specification document for an overview of the PRISM database
design. Detailed database design is not complete; below is a list of models currently
implemented.

The following Mongoose schemas have been implemented. All Mongoose schemas have a
MongoDB ObjectId associated with them by default; the schemas below are not an exception.
Square brackets ([]) indicate arrays in Mongoose schemas. ObjectId fields are indicative of
references to other objects. What these references are to is apparent by their field name.

● Action
○ text: String
○ date: Date
○ user: ObjectId
○ type: string
○ object: ObjectId

● College
○ name: String
○ abbreviation: String
○ deans: [ObjectId]

● Department
○ name: String
○ abbreviation: String
○ college: ObjectId
○ chairs: [ObjectId]

● Document
○ title: String
○ revision: Array of

■ message: String
■ filename: String
■ originalFilename: String
■ dateUploaded: Date
■ uploader: ObjectId
■ template: Boolean

○ comments: Array of
■ text: String
■ author: Array of

● _id: ObjectId
● username: String
● name: String

■ creationDate: Date
■ revision: Number
■ originalFilename: String

○ subscribers: ObjectId

○ template: Boolean
○ coreTemplate: Boolean
○ completionEstimate: Number
○ locked: Boolean
○ groups: String

● Event
○ title: String
○ date: Date
○ canceled: Boolean
○ documents: ObjectId
○ groups: ObjectId
○ people: ObjectId

● External Upload
○ token: String
○ message: String
○ user: ObjectId
○ document: ObjectId
○ completed: Boolean

● Group
○ name: String
○ members: [ObjectId]
○ access: Boolean

● Program
○ name: String
○ department: ObjectId
○ nextReviewDate: Date

● Resource
○ title: String
○ files: Array of

■ message: String
■ filename: String
■ originalFilename: String
■ dateUploaded: Date
■ uploader: ObjectId

○ groups: ObjectId
● Review

○ program: ObjectId
○ startDate: Date
○ finishDate: Date
○ externalUploads: [ObjectId]
○ leadReviewers: [ObjectId]
○ endNodes: [ObjectId]
○ nodes: Object mapping ObjectId to:

■ startDate: Date
■ finishDate: Date

■ completionEstimate: Number
■ finishDateOverriden: Boolean
■ finalized: Boolean
■ document: ObjectId
■ prerequisites: [ObjectId]
■ title: String

○ deleted: Boolean
● User

○ username: String
○ email: String
○ name:

■ first: String
■ last: String

○ internal: Boolean
○ root: Boolean
○ groups: [ObjectId]
○ disabled: Boolean
○ config: Array of

■ email: Array of
● documentFinalized: Boolean
● newComment: Boolean
● meetingChange: Boolean

○ samlType: String
○ passwordHash: String

9. User Interface
9.1 Overview of User Interface
The system provides various components to aid users in the completion of their tasks to the
overall program review process. Any internal user will be able to access certain Reviews,
Dashboard, Calendar, Resources, Committee, and Settings at any page via side menu.

9.1.1 Dashboard
The dashboard offers quick access to program review tools. Users can easily navigate to an
active program review, archived reviews, and recent actions.

9.1.1.1 Active Reviews
This tab allows administrators to create new program reviews. Non-admins are limited to
making progress on an existing review to which they are assigned. An alert message
informs the administrators when there are not any active reviews in existence.

9.1.1.2 Review Archive
This tab lists all past program reviews and allows users to access their data. An alert
message informs the administrators when there are not any archived reviews in existence.

9.1.1.3 Recent Actions
This tab lists useful information about the user’s contribution history and access to
related data. An alert message informs users when there are not any archived reviews.
Administrators have exclusive information displayed about other user’s contribution and
equipped with a search bar to find a specified user’s contribution.

9.1.2 Calendar
This calendar tool allows users to create events for PRS meetings with notifications containing
an attached file for the event. The calendar contains marks that represent events that are active in
yellow and canceled events in red. Event details are displayed in a pop up window.

9.1.3 University Hierarchy
This tool is is for administrators to manipulate college, departments, and program level data
stored in the system. This component is not displayed to non-administrators.

9.1.4 Group Manager
This tool allows administrators to create and manage the grouping of members of the PRS or
administrators. An accordion is used to handle the data with panel titles displaying group names
and the panel contents holding the roster information.

9.1.5 Document
Review documents are accessible by clicking on a node on the flowchart of a program review.
New documents can be added by clicking the add document button and providing form data.
New documents created will appear in the flowchart as separate nodes. These documents can be
tracked and untracked by users, marked as finalized and have their estimated completion time

extended for deadline extensions. The document is partitioned into three tabs: main version,
previous version, and comments. The documents are all downloadable regardless the version.

9.1.5.1 Main Version
This tab holds information about the latest document in use for a program review. Users
are able to update the latest document used via upload or reverting from a previous
version.

9.1.5.2 Previous Revisions
This tab holds information about previous documents used in a program review. The
users can delete, or revert to this documents as the main version.

9.1.5.3 Comments
This tab holds comments directed toward a revision and allows users to edit or delete
these comments.

9.1.6 Resources
This tool allows users to download resource files and create new resources. Multiple resource
deletion and download is supported. A dynamic search bar allows users to filter the resources
and a counter helps users keep track of the correct amount of files or resources are stored in the
system.

9.1.7 Review
Program reviews are displayed in a colored flowchart that has completed documents in green and
non completed documents in gray. Documents currently being worked on are colored blue. The
flowchart contains clickable nodes that represent key stages in the program review process.
These nodes will display document information below the chart when the user clicks on a node

9.1.8 Settings
This component allows users to configure profile settings such as their own password and
username.

9.1.9 Template Manager
This tool allows administrators to create templates for documents that will be used in program
reviews. Templates are archived as new revisions are uploaded. Selecting from the list of
templates will take administrators to a page for uploading the template file or revision file.

9.1.10 Committee
This interface displays a table of all PRS members and their email.

9.2 Screen Frameworks or Images

9.2.1 Login Component
User enters their login credentials, typically their Cal State LA information, to log into the
system.

9.2.2. Dashboard

9.2.2.1 Active Reviews Tab
Tab consists of current active reviews the user has a role in. As an Administrator, they are
allowed to edit lead reviewers, add and delete reviews.

9.2.2.2 Review Archive Tab
Tab consists of previously completed reviews for archival purposes. Users may look at previous
reviews as a template for an ongoing review.

9.2.2.3 Recent Actions tab
Tab displays all the recent actions users have taken within the system such as file uploads,
updates, and deletions.

9.2.3 Calendar Component
Tab displays a calendar with upcoming events complete with email notifications.

9.2.4 University Hierarchy Component

Tab consists of the hierarchy at CSULA. Users will be able to navigate through the different
colleges, departments, and programs.

9.2.5 Resources Component
Tab consists of additional resources of documents users may need.

9.2.6 Group Manager Component
Tab consists of access control for the system. Administrators are able to add and remove users
from groups. Groups restrict access to certain data within the system.

9.2.7 Template Manager Component
Tab consists of templates for previous reviews which users are able to download.

9.2.8 Settings Component

Tab consists of user configurations which users will be able to edit such as their name, email,
and password.

9.2.9. Review Component

9.2.9.1. Document Component - Main Version Tab
Tab consists of the program review process. The main version displays the current accepted
revision.

9.2.9.2. Document Component - Previous Revisions Tab
Tab displays all previous revisions that were uploaded. Administrator can delete and revert a
previous revision as the current one.

9.2.9.3. Document Component - Comments Tab
Tab displays the comments that are made by users under a certain document revision.

9.2.9.4 Document Component - Create External Upload Model
Tab displays form where administrators will be able to fill out in order to let an external reviewer
access the site and upload their document.

9.2.10. External Upload Component
Page which allows external reviewers to upload their document.

9.3 User Interface Flow Model
The user interface is as stateless as possible where there are no sessions stored for the sake of
simplicity. The UI flow consists entirely of selecting menu buttons which are then followed by
the appropriate modals. Any actions that require creating, manipulating, or deleting data will
update the database and are logged to the overall history of actions done by users. This will
provide quick shortcuts to users that will directly link them to where their last actions were
taken.

9.3.1 Dashboard UI Flow Model

9.3.2 Calendar UI Flow Model

9.3.3 University Hierarchy UI Flow Model

9.3.4 External Upload, Group Manager, Settings, Template Manager, and Resources UI Flow
Model

10. Requirements Validation and Verification

Requirements Related to the Review Process (1.1, 1.2, ...)
Requirement

No.
Requirement Description V&V

Methodology
1.1 The administrator shall be able to create a new review. Demonstration
1.2 The administrator shall be able to access any review. Demonstration
1.3 The administrator shall be able to update any review. Demonstration
1.4 The administrator shall be able to delete any review. Demonstration
1.5 The system shall track the status of each document pertaining to a

review.
Testing

1.6 The system shall display the status of a review. Demonstration
1.7 The system shall display the documents of a review. Demonstration
1.8 The system shall track the estimated completion date of each

document.
Analysis

1.9 The system shall allow lead reviewers and administrators to change
the estimated completion date of each document.

Testing

1.10 When a review is initiated, the system shall import the templated
documents to be part of the review’s documents.

Testing

1.11 The system shall allow users to upload non-standard documents. Demonstration
1.12 The system shall allow users to access non-standard documents. Demonstration
1.13 The system shall allow users to update non-standard documents. Demonstration
1.14 The system shall allow users to delete non-standard documents. Demonstration
1.15 The system shall allow administrators to upload admin-controlled

templates.
Demonstration

1.16 The system shall allow administrators to access admin-controlled
templates.

Demonstration

1.17 The system shall allow administrators to update admin-controlled
templates.

Demonstration

1.18 The system shall allow administrators to delete admin-controlled
templates.

Demonstration

1.19 The system shall allow administrators to finalize a document. Demonstration
1.20 When a review is initiated, the system shall be able to send an e-mail

to the chair of the department of the program under review.
Testing

1.21 When the administrator creates new reviews, the system shall
provide a list of program which should be up for review during the
current year.

Demonstration

Requirements Related to Document Collaboration (2.1, 2.2, ...)
Requirement

No.
Requirement Description V&V

Methodology
2.1 The system shall allow users to upload new revisions of a document. Demonstration
2.2 The system shall store all revisions of a document. Demonstration
2.3 The system shall allow users to download the current revision of a

document.
Demonstration

2.4 The system shall be able to send e-mail notifications to selected PRS
members when a document is uploaded.

Testing

2.5 The system shall allow users to subscribe to e-mails about
documents concerning them

Testing

Requirements Related to Miscellaneous Storage (3.1, 3.2, ...)

Requirement
No.

Requirement Description V&V
Methodology

3.1 The system shall be able to store agendas and meeting minutes
uploaded by a user.

Demonstration

3.2 The system shall be able to store resources to be made available to
all PRS members.

Demonstration

3.3 The system shall be able to send e-mail notifications to selected PRS
members when an agenda is uploaded or changed.

Testing

3.4 When sending e-mails, the system shall be able to attach a
document to the e-mail.

Testing

Requirements Related to Calendar (4.1, 4.2, ...)

Requirement
No.

Requirement Description V&V
Methodology

4.1 The system shall store the dates and times of meetings of the PRS. Demonstration
4.2 Users shall be able to create a new meeting for the calendar to track. Demonstration
4.3 The system shall display all the dates and times of meetings of the

PRS to PRS members.
Analysis

4.4 Users shall be able to update the date and time of a meeting. Demonstration
4.5 Users shall be able to delete a meeting. Demonstration
4.6 The system shall be able to associate a list of meeting agendas or

minutes with each meeting.
Analysis

4.7 Users shall be able to modify the list of associated meeting agendas
and minutes for a meeting.

Demonstration

4.8 The system shall send e-mail reminders to PRS members 24 hours
before a meeting with all associated meeting agendas as
attachments to the e-mail.

Testing

4.9 The system shall send e-mail notification to all PRS members when a
meeting is deleted.

Testing

Requirements Related to Comment System (5.1, 5.2, ...)
Requirement

No.
Requirement Description V&V

Methodology
5.1 The system shall allow users to create comments on a document. Demonstration
5.2 The system shall display the comments of a specified document to

users.
Demonstration

5.3 The system shall display the author of each comment. Demonstration
5.4 The system shall display the date of each comment. Demonstration
5.5 The system shall allow users to edit their comments. Demonstration
5.6 The name of the current revision at the time of the creation of the

comment shall be displayed with each top-level comment.
Testing

Requirements Related to the User Authentication (6.1, 6.2, ...)
Requirement

No.
Requirement Description V&V

Methodology
6.1 The system shall direct users to a login page if that user is not

currently logged in.
Demonstration

6.2 The user shall be blocked from accessing the system if the user is
not logged in.

Testing

6.3 The system shall allow users to log in using their CSULA-provided
credentials if they are CSULA faculty.

Testing

11. Glossary
Acronyms:

● CSULA - California State University of Los Angeles
● E2E - End-to-End (Testing)
● HTTP - HyperText Transfer Protocol
● HTTPS - HyperText Transfer Protocol over TLS
● MOU - Memorandum of Understanding
● PRISM - Program Review Information System Management
● PRS - Program Review Subcommittee
● SAML - Security Assertion Markup Language
● SMTP - Simple Mail Transfer Protocol as specified in RFC 5321
● TLS - Transport Layer Security

Definitions:

● Document - A single document being produced that contains multiple revisions of its
file. (i.e. Self Study, Summary Report, etc.)

● File - Consists of arbitrary data that holds content for a document (i.e. Self Study
v1.docx, Self Study v2.docx, etc.)

● Program - A degree program under specific college departments (i.e. Computer Science,
Electrical Engineering, etc.)

● Review - A single review process for a department’s degree program during a specific
year (i.e. CS MS 2018, CS BS 2024, etc.)

● Shibboleth - An implementation of SAML authentication that provides an Identity
Provider among other products

12. References
Google JavaScript Style Guide (https://google.github.io/styleguide/jsguide.html)

https://google.github.io/styleguide/jsguide.html

