
SENIOR DESIGN REPORT

Mobile Navigation Control for
Planetary Web Portals

- Trek Controller -

5/19/2017

Team members:

John Calilung
Miguel Martinez
Frank Navarrete

Kevin Parton
Max Ru

Catherine Suh

Faculty Advisor:
Dr. Elaine Kang

JPL Liaisons:
Emily Law

George Chang
Shan Malhotra

1

Table of Contents

I. Executive Summary 3

II. Overview 4

III. Environment Setup 5
iOS Application 5
Web Application 5
Queueing Server 5

IV. Application Flow 6
Initialization 6
In Control 7

V. Implementation 8

VI. Major Components 12
Trek Controller 12
Trek Portal 12
Trek Portal CDN 12
Trek Controller Web App Server and Queueing Server 13
Queueing Server Database 13

VII. Extras 14

VIII. Performance 15

IX. Technologies 16

X. Conclusion 17

2

I. Executive Summary
This is the final report for the Senior Design group assigned to JPL’s Mobile
Navigation Control for Planetary Web Portals. The purpose of the year-long
Senior Design class at Cal State LA is to facilitate an environment similar to
the work field - to have students work together and with professional
engineers on a large-scale project. The project is to develop a mobile
controller for JPL’s existing Planetary Web Portals, also known as the Trek
Portals. The following sections explain the project further, specify the
software requirements needed for and describe each component of the
project, and describe the application flow. Also included is information on
performance, the technologies used, and extra features added to the
project.

3

II. Overview
The purpose of this project is to develop a mobile remote controller for JPL's
Mars Trek and Vesta Trek. As stated on the official Mars Trek website, 'Mars
Trek is a NASA web-based portal for exploration of Mars.' It provides an
exciting way for students, citizen scientists, and the public to explore some
of Mars’ most spectacular landforms as well as NASA areas of operation on
Mars’ surface. Due to privacy constraints, the mobile controller, titled Trek
Controller, will only allow exploration of a standalone site which mimics Mars
Trek.

Trek Controller is implemented as both an iOS native app and a Web app so
that users of all devices can explore Mars. There are three controller modes
which use joystick controls, touch gestures, or motions that utilize the
mobile device's gyroscope. Trek Controller also offers guest queueing for
situations such as conferences or museum events where multiple users wish
to use the controller. A user must enter a 4-digit code or scan a QR-code to
enter the queue or, if there is no queue, to enter the default controller mode
which uses touch gestures with the phone oriented upright (portrait).

Once in a controller mode, the user can easily switch between the three
modes using the options on the menu bar at the bottom of the screen. To
use the joysticks or gyroscope, the mobile device must be turned sideways
(landscape). In all controller modes, the enabled movements are up, down,
left, right, the diagonals between, zoom in and zoom out. There is also a
toggle button to toggle the view of Mars between 2D and 3D as well as a
reset button which will reset the view of Mars to its default center on the
page.

Trek Controller also includes other features like Mars Fast Facts, Weight on
Mars, and social media links. Mars Fast Facts includes information such as
the temperature on Mars and number of days to a Mars year. Weight on
Mars will prompt a user for a weight and convert it to what the weight would
be on Mars. The social media links will take a user to JPL accounts of those
social media avenues. Additional features we had hoped to implement are
Presenter Mode which would disable the guest queue and allow handing over
control to particular users, Bookmarks of particularly interesting coordinates
on Mars, and Screenshots saved to the mobile device of whatever view is
currently on the screen.

4

http://marstrek.jpl.nasa.gov/
http://marstrek.jpl.nasa.gov/

III. Environment Setup

1) iOS Application
a) Xcode 8.1 and later

i) Xcode 8.3 and later Recommended
b) iDevice ≥ 5 and iOS ≥ 8.0

2) Web Application
a) Java (SE 6 or later)
b) Eclipse IDE for Java EE Developers
c) Tomcat 7

i) External libraries needed:
1) JSTL 1.2
2) MySQL Connector JDBC Driver 5.1

3) Queueing Server

a) MySQL Version 5.7
i) Root

1) User: root
2) Pass: Cholula2020$picy

ii) Databases
1) User: tc_user
2) Pass: Tapatio2020$picy

5

IV. Application Flow

Initialization

1. Trek Portal goes up and requests unique ID from Queueing Server
2. Queueing server generates unique ID by checking available codes in

database then returns code. Trek Portal displays unique QR code.
3. Trek Controller scans QR code, connects with server, server creates a new ID

and returns to controller.
4. Server updates Trek Controller with position in queue or sends command to

start controlling trek.

6

In Control

1. Trek Controller sends commands to server.
2. Server looks up which controller is to receive the command and pushes the

command accordingly.
3. Trek Portal receives command and goes to CDN for additional planetary

images.
4. CDN returns images and Trek Controller reacts to command from Trek

Controller.

7

V. Implementation

1. Agile development principles were used to allow for frequent testing
periods, which helped the developers refine the design, features, and
functionality.

2. Multi-Platform support was taken care of my making an iOS app for

Apple devices and a Web App for all mobile devices.

3. A Queuing system was made to handle multiple users with position
feedback.

4. Asynchronous Javascript and XML (AJAX) is a client side script to send

the user’s move commands from the Web App Trek Controller to the
Command Server.

5. HTTP requests is a native HTTP communication protocol used to send

commands from the iOS devices to the Command Server.

6. iOS Mobile Controller - Controller Modes
a. Touch-Swipe Mode: There are two primary functions used

from the UIKit - touchesBegan and touchesEnded. TouchesBegan
is called when the user first touches the screen. Once the user
removes his or her finger from the screen, touchesEnded is
called. Within our touchesEnded function, the angle of the swipe
is calculated then sent to the state class. The state class then
returns if the user’s swipe was up, up-right, right, down-right,
down, down-left, left, or up-left.

b. Joystick Mode: The two joysticks from joystick mode uses an
open source library called “AnalogJoystick.swift” to create the
joysticks. We made a scene for the two joysticks then added the
scene to a skView. A link to the library can be found in Section
VIII: Technologies.

c. Motion Mode: The CMDeviceMotion Class from the Core Motion
framework in iOS encapsulated measurements of attitude, pitch,
and yaw by using the device’s gyroscope. Using the
measurements, appropriate movement commands could be sent.

8

7. Web Mobile Controller — Controller Modes:
a. Touch-Swipe Mode: Used an external open-source library

called “hammer.js”. For touch-swipe mode, we created a ‘div’
element that fit the whole screen minus the menu bar. We then
attached “touch recognizers” to the element so that it can
recognize touch gestures. A link to the library can be found in
Section VIII: Technologies.

b. Joystick Mode: Used an external open-source library called
“nipple.js”. We created two ‘div’ elements and placed them in
the middle of the screen. We then created two joysticks and
attached each of them to their corresponding ‘div’ element. A
link to the library can be found in Section VIII: Technologies.

c. Motion Mode: This has not yet been implemented for the Web
Application. Although, we will most likely use the
DeviceMotionEvent API for implementation.

8. Standalone Site Integration (Mars Trek)

a. Created a namespace (trek-ctrl-namespace.js) for our variables
throughout the source code that we were given.

b. Created a communication point (trek-controller.js) from our
server to the standalone site.

c. Modified the following files from the source code:
i. 3DGlobeView.js (3D Control): There are keypress

events in this file that listens for user movement on the
Trek site. We placed our variables alongside these events
to simulate a movement command. We then would turn on
or off these variables according to user commands.

ii. SearchMap.js (2D Control): We found a Maps object in
this file and we looked at the ArcGIS documentation to
manipulate the extent or viewport of the current scene. We
used built-in methods to move the map with any of the
8-way direction movements and we could also zoom in or
out.

iii. ControlBar.js (QR Code): Used this file to overlay the
QR code that is generated from qrcode.min.js. We also
used this to put up the 4 digit code that is generated from
our server.

9

9. Queueing Server API
Trek Controller uses the following API to connect devices to the
Queueing server and send commands.

Specifications
Protocol: HTTP
Request Type: GET
Request URL:
http://csproject.calstatela.edu:4050/WebMobileController/TakeComma
nds

Sample Request URL:
http://csproject.calstatela.edu:4050/Hyperwall?x=1&y=0&z=0&w=1

Variable Table:

Variable Req/Opt Type Description Example

x optional int Left, stop, or right
{-1,0,1}, respectively

1
0

y optional int down, stop, or up
{-1,0,1} respectively

1
0

z optional int Zoom out, stop, or
in{-1,0,1}
respectively

1
0

Example 1:
Scenario: swipe from center to the top left of the screen:
x=1
y=1

Full URL to send:
http://csproject.calstatela.edu:4050/Hyperwall?x=1&y=-1

Example 2:
Scenario: swipe from center to the the right
x=-1
y=0

10

http://csproject.calstatela.edu:4050/Hyperwall?x=1&y=0&z=0&w=2displacement=1000&time=1000

Full URL to send:
http://csproject.calstatela.edu:4050/Hyperwall?x=-1&y=0

Example 3:
Scenario: Pinch out (spreading) to zoom in

z=1

Full URL to send:
http://csproject.calstatela.edu:4050/Hyperwall?z=1

10. QR Code

a. Library: QRCode.js generates QR Code image from the browser
after receiving ID from Queueing Server

b. Trek Portal: Using jQuery, existing on-page elements are
modified to fit a QR Code image so that a Trek Controller can
scan it.

c. Trek Controller: using any phone QR Code reader or the iOS
Trek Controller App: scan the QR code on the Trek Portal screen
to be placed in the queue to control trek.

11

http://csproject.calstatela.edu:4050/Hyperwall?x=1&y=0&z=0&w=2displacement=1000&time=1000
http://csproject.calstatela.edu:4050/Hyperwall?x=1&y=0&z=0&w=2displacement=1000&time=1000

VI. Major Components

Trek Controller

Trek Controller is implemented as both an iOS native app and a Web app so
that users of all devices can explore Mars. There are three controller modes
which use joystick controls, touch gestures, or motions that utilize the
mobile device's gyroscope.

Trek Portal

A NASA web-based portal for exploration of Mars. Trek Controller integrates
with Trek via client-side JavaScript functions. Trek Portal uses its own server
for the hosting of HTML files.

Trek Portal CDN

Trek Portal gets its images of Mars via a Content Delivery Network (CDN) on
Amazon Web Services. The fetching of images in handled automatically with
the ArcGIS JS library.

12

Trek Controller Web App Server and Queueing Server

Trek Controller Web App Server and Queueing Server hold all the files
necessary for the web app to function as well as the queueing system to
handle all Trek Controllers and Trek Portals.

Queueing Server Database

Stores states of Trek Controllers and Trek Portals. Is used to generate
unique IDs when a new Trek Controller or Trek Portal goes live.

13

VII. Extras
1. Mars Fast Facts: the Mars Fast Facts section of the application is meant the give

the user a few fast, fun facts about Mars. For instance, the largest volcano in the
solar system is on Mars and is larger than the state of Arizona, and the length of
a day on Mars is 24 hours and 37 Earth minutes.

2. Weight on Mars: input an Earth weight in pounds and see its equivalent weight in

pounds on Mars.

3. About Trek Controller: a credits page to open source libraries used to create Trek
Controller.

4. Social Media Links: social media links to the pages of JPL on Facebook, Twitter,

Youtube, and Instagram.

14

VIII. Performance

Latency: average time to send a user’s move command from Trek Controller
to the server is on average less than 20 milliseconds over WiFi.

Disconnects: Trek instance disconnects have automatic reconnect attempts
handled with SSE’s. Lost commands are not resent by the server; SSE
settings allow for the most recent lost data to be sent again, but we decided
against utilizing this as it would cause camera movements not directly tied in
real-time to user commands. Furthermore, controller disconnects lead to lost
commands since connections are over HTTP Get Requests using AJAX.

15

IX. Technologies

1. JavaScript was used in the development of the Web app; the
Standalone site that was provided was developed in Javascript as well.

2. Third Party Software was used for client side purposes. Qr.js is a

library used to generate the QR code on the standalone site.
Hammer.js was a library used for the touch-swipe controller mode,
and Nipple.js was a library used to generate the joysticks on the Web
app. AnalogJoystick.swift was used to generate the joysticks on the
iOS app. The icons on the menus were all sourced from Icons8. Here
are the respective links:

http://hammerjs.github.io/
https://github.com/yoannmoinet/nipplejs
https://github.com/MitrophD/Swift-SpriteKit-Analog-Stick
https://icons8.com/

3. Server Sent Events (SSE) was used in order to have a uni-directional

communication protocol; it uses HTTP to push the user’s move
commands from the Command Server to Trek Portal in real time.

4. Servlets are Java programs that extend the capabilities of a server and

were used in the implementation of Server Sent Events (SSE)
communication protocol.

5. Swift 3 is Apple’s programming language used to develop iOS apps. It

is the current standard and Apple requires apps to be follow it’s
guidelines if it is to be published to the App Store.

6. MySQL is a relational database management system and was used in

the queue implementation and stored the Controller ID and Trek ID.

16

https://icons8.com/
http://hammerjs.github.io/
https://github.com/MitrophD/Swift-SpriteKit-Analog-Stick
https://github.com/yoannmoinet/nipplejs

X. Conclusion
We’ve designed the entire communication architecture of Trek Controller and
integrated it into the prototype of JPL’s Trek Portal. For the back-end, we
created our own control variables to read and issue move commands by
piggybacking on the existing camera movement API to control what is seen
on Trek Portal. The front-end work resulted in a user-friendly mobile
controller that supports 8-way movement and zoom. The Queueing system
was designed using a MySQL database to keep track of users and Trek Portal
instances. Additional features we would have liked to implement are the
ability to bookmark locations and save screenshots to the mobile device of
what is seen on Trek Portal.

17

