Jet Propulsion Laboratory Download Manager
(JPLDM)

CS496 Senior Design

Project Document

Prepared by:

Team Members:
Abdias Andres
Rowan Edge
Mariah Martinez
Gregory Miles
Adrian Rendon
Kevin Tu

Faculty Advisors:
Kang, Elaine
Zhu, Yuqing

May 5, 2016

CALIFORNIA STATE UNIVERSITY LOS ANGELES

Los Angeles, California

JPL Download Manager
(JPLDM)

Table of Contents

Section 1: Executive Summary 2
Section 2: Introduction 3
Section 3: User Guide 3
Section 4: Lifelong learning 6
Section 5: Architecture and design 17
Section 6: Conclusions 18
Section A: Acronyms 20

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.

Section 1: Executive Summary

For this project, our client was Jet Propulsion Laboratory(JPL). JPL is the leading
United States center for robotic exploration of the solar system. They have multiple
spacecrafts and instruments to fulfill their space based astronomy missions. JPL
currently runs a web portal called the Lunar Mapping and Modeling Project(LMMP) that
provides access to collections of lunar data such as image mosaics, digital elevation
models, hazard assessments maps, lighting maps and models, gravity models, and
resource maps. One perspective of LMMP is as an initial step in an interplanetary
geographic information system, such as Google maps. Currently, the LMMP is hosted
via an online portal that is cumbersome to navigate, download files and search for lunar
geographic information files. Our group was tasked with creating an download manager
that would streamline, optimize and increase the efficiency of lunar geographic
information file search and download.

The LMMP makes heavy use web technologies that have fallen out of vogue,
such as Adobe Flash. Because Flash lacks the dominance and popularity on the web it
used to enjoy, it is beginning to lack browser support, such as in versions of Chrome
coming out this year. For the LMMP project this presents a problem since the primary
technology used to navigate the portal is a Flash based user interface. Additionally, as an
initial step in an interplanetary geographic information system, LMMP will need the
ability to scale to increased customer and data usage. One of the biggest buzzwords in the
current tech world is the cloud. One of the main selling points of cloud services is
scalability and responsiveness to a web product’s traffic without having to build,
maintain, configure and provide space for new infrastructure. Because of these benefits of
cloud services our team designed the download manager around an Amazon Web
Services (AWS) backend.

AWS is a wide variety of services and we settled on AWS Simple Storage Service
(S3) with CloudFront as the primary cloud services. AWS S3 would allow for storage of
the lunar geographic files while CloudFront provides a Content Distribution Network
(CDN) for increased file transfer speeds. Another aspect of our project was to build a
Representational State Transfer (REST) Application Programming Interface (API)
utilizing AWS to allow for
scripting and other developers to be able easily integrate the LMMP into their projects.
For the client side we developed a Graphical User Interface (GUI) that would provide the
opportunity for our team to customize the download manager capabilities to interact with
server side geographic information files.

Our project has delivered the basic components of a download manager, such as
LMMP file search and retrieval along with providing a CDN. For our GUI we used the
JavaFX software platform. JavaFX can be customized with Cascading Style Sheets (CSS)
and provides the functional programming aspects of Java 8, although we did find a
learning curve. Our code is structured so that future developers and maintainers of the
project can quickly take advantage of our lessons learned and code base to extend and
update the download manager. The JPL download manager was also a wonderful

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
2

opportunity to work with the Jet Propulsion Laboratory and as a team we were grateful
for the time our liaisons took out of their busy schedules to assist us.

Section 2: Introduction

For our project, JPL Download Manager(JPLDM), in collaboration with Jet
Propulsion Laboratory(JPL) to create a desktop application that allows users to download
and access JPL’s extensive lunar mapping images.

JPL’s Lunar Mapping and Modeling Portal(LMMP) has their own downloading
process however it was shown to be too troublesome to use. As well as creating a strain
on JPL’s servers if there was too many downloads running at once. Our fix is the JPL
Download Manager which will display all lunar images available for download to users
in a compact graphical user interface. Users will be able to pick and choose the images
they would like to download from the JPL database hosted at Amazon’s storage services.
Users will also be able to preview the images before downloading to ensure the images
are correct before proceeding. The JPLDM will give real-time updates to the status of
downloads such as the time remaining and download speed along with full control over
how the user would like to download the images.

Section 3: User Guide

3.1 Developer Instructions

Tools Needed
- Eclipse IDE https://eclipse.org/downloads/

Once Environment is Ready:

Unzip [download-manager..zip] file

Open Eclipse

File > Import > Existing Projects Into Workspace

Select the root directory of the unzipped file [.../download-manager]
Click the run button to launch the application

ik w =

3.2 User Instructions
1. The application is in a runnable JAR. Double clicking on
JPL-DownloadManager.jar launches the app.

33 Navigation Through the Download Manager
Video of navigations through the application

® hittps.://voutu.be/fi-LTpOALPs
® https.//voutu.be/ JHrVrxeUvo

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.

https://eclipse.org/downloads/
https://youtu.be/fi-LTpOALPs
https://youtu.be/_JHrVrxeUvo

3.2.1 Logging In

Note: There is currently a hard coded user since the backend for
users is not setup. These credentials are “Username: jdoe,
Password: password”

To log into the application click on the “Users” menu option on the
menu bar.

Click on “Login”

Once login is clicked, the user should now have access to the
encrypted files if they have access to view them and there exists
any encrypted files.

3.2.2 Viewing and Editing Profile

To view and change the user profile, navigate to “Users” in the
menu bar and select “Profile”

From this popup, a user can see their profile information.

To edit a profile, click on “Edit Profile” and change the necessary
information before clicking save.

3.2.3 Changing downloads path

By default, the current downloads path is a user's local downloads
folder.

To change this, click on the “Settings” menu item on the menu bar.
Click on “Download Settings”

Click the button with the three dots to open a file system window.
Select your desired folder and click “ok”

Once back to the application, click on “Save”

3.2.4 Searching / Previewing / Downloading a file

To search for an image, type a keyword in the search bar and click
on the magnifying glass. At the moment the only search criteria are
the words in the file name.

To preview an image before downloading, click once on the item
you would like to download in the database table.

Once clicked, information should appear on the bottom pane of the
application.

To download a file double click on the file you would like to
download from the database table.

Once double clicked, the file should show up in the downloads
table with the download status.

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian

Rendon & Kevin Tu, May 2016.

4

3.2.5 Pausing / Resuming / Deleting Files

- To pause a downloading file, click on the file from the downloads
table. Once selected, click the pause button on the toolbar. Since
files download in parts, the pause will not occur right away. The
part that is currently downloading needs to finish first.

- To resume a paused file, click on the file from the downloads
table. Once selected, click the play button on the toolbar. The file
should start downloading right away and the status information
should start updating.

- To delete a file, click on the file from the downloads table. Once
selected, click the ‘X’ button. This will remove your file locally.

3.4 Uploading the meta-data to AWS Elasticsearch

3.4.1 Obtain needed files
- After setting up AWS Elasticsearch obtain the URL for the
Elasticsearch endpoint and save in the first line of the file
“es_link.txt” in the same directory as the script
“scrape_es_upload.py”.
- Save the LMMP API URL with username and key included in the
file named “Immp_api.txt”.

3.4.2 Build the Elasticsearch mapping

- Run the script “mappings.sh” with the Elasticsearch URL endpoint
as the command line argument.

3.4.3 Upload meta-data via web-scraping using LMMP API

- Run the script “scrape _es_upload.py”. This should take about an
hour to complete.

3.4.4 Test Elasticsearch API
- Run the command :

curl -XPOST '<YOUR ES ENDPOINT>'-d '{
"query”.‘ {”match".‘ { ”_all".‘ HLROH}}}!

- If the meta-data has successfully been web scraped and uploaded
the output should be all matches for LRO.

- Kibana is also a feature of AWS Elasticsearch which allows
exploratory data analysis. The Kibana link should be available in

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.

5

the AWS Elasticsearch web console. When using remember to
change the dates which are being searched in the Dashboard setting
upper right hand corner.

Section 4: Lifelong Learning

Each member of the group has given their learning experience below.
4.1 Abdias Andres

The knowledge and skills I have attained about the field in computer science do
not stop once I graduate. As with any aspect of life, lifelong learning continues. This also
applies to my educational experience in the field of computer science. Through this
process I have learned various systems and tools. However, from working in my senior
design project the most important tool I have learned to use is Git and GitHub. I learned
this by asking my teammates as well as doing some research online showing the various
ways to apply it into our project. By being part of this working project, I also learned
important skills that can be transferred to potential jobs. This is one of the most valuable
lessons I learned from learning.

Though, I learned about different tools and learned to apply it during the span of

this project. What I felt the most important tool that helped was Git and GitHub. Git is a
version control system that helps during the process of software development allowing
teammates to keep track of changes in the project. GitHub allows developers to store
their projects and also interact with teammates. The way this was applied to our project
was to assign teammates with a certain task to complete on the project. For example, I
was assigned to develop the settings option of the download manager, others were
assigned to do user options and download options. Once we finish our part of the project,
we used Git to push our contributions to GitHub allowing the rest of the team to view and
download the new version. Reviewing if everything works, as it should. Once we find
that the changes work we then merge all of the code into one main branch called the
master branch. Where we now have all of our code put together nicely. The luxury of this
tool is crucial in software development because it makes keeping the code organized very
easy. Before I knew about this, for previous classes when we have a project that was
group work we had to assign one person to put the code together. Everyone had to do
their part then email the person with our parts then he had to manually go and put it
together which is a hassle and makes its very disorganized. With this tool we can go back
to a previous working point of the project in case the new changes had too many errors.
For this reason, it was crucial for all of us to learn about Git commands and how to create
our own branch in GitHub, so that the main project can move along effectively.
Furthermore, the process of learning Git and GitHub was not in one particular
way. At first, [asked my teammates who had previously used the tools on why we would

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.

use this for our project and how can it help. Once I knew the importance of the tool, I
asked for some guidance on Git commands, which did help, but I found that I learned that
command for a short time that caused me to ask again. Then I turned to Google and
various other reliable websites and started looking up examples of when to use a
command and how. By doing this I knew more about the meaning of the command and
had an actual understanding of it. Before I just memorized the command, but learning and
going into details, I knew more than just memorize. Then once I knew the “why” part |
had to apply it; this is when I practiced using the commands. In GitHub, I practiced
making my own branch once that was done I made a simple text file and tried pushing
that onto GitHub using the Git commands I had just researched. Doing this repetitively I
understood when and how to apply what I learned to the right situations.

Moreover, I learned that I am always going to continuing learning on my own,
especially since I am now going to be done with school. Which will mean I will not be
able to rely on professors help. During this class [was able to find an effective way to
learn new technologies and that gives confidence when going into the professional field. I
will be able to apply this with either asking a coworker or simply doing my own research
applying it. Learning new technologies can be a bit intimidating at first but once you have
an effective way to understand new technologies you gain confidence that you can learn
it. Just have to accept that it takes patience and it will not happen overnight. Also, Git and
GitHub is widely used by various companies. Knowing that I learned a tool on my own
that is a standard at many companies gives me confidence. Hearing some advice from
professionals already in the field, the most common thing they say is, you never stop
learning. With the advancement of technologies growing at a rapid pace, its good to know
I have process which I can rely one to learn new technologies.

In conclusion, in this experience I have learned an important tool, Git and GitHub.
I have learned it is an essential tool that helps during the process of software development
and 1s widely used by many professionals. I learned how to research information about a
new technology and not be intimidated. In this case, it was Git and GitHub, which I did
by asking my peers questions, researching this tool online, and applying it to my own
projects. By doing so, I also learned the skills I need so that I continue to learn on my
own (e.g., doing my own research and asking colleagues questions). From this experience
I have learned an essential tool that I may encounter again in the future. I have also
learned skills necessary that will continue to help me prosper in my continuing education
and prospective job.

4.2 Rowan Edge

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
7

We’re always led to believe that the single most important consideration in
working with a group of engineers is whether they’re technically capable of doing their
jobs. The technology world calls itself a meritocracy, valuing knowledge and talent above
all else. But over the course of this academic year, I’ve learned that every member of a
team project must also take into account many other factors in order to help the rest of
their team achieve its goals. Most notably, I found my social skills tested perhaps even
more than my technical knowledge, as I learned to walk the fine line between effective
guidance and counter-productive micro-management.

When we began working on this project last fall, I assumed that the single largest
obstacle would be our general lack of familiarity with Amazon Web Services. That
prediction could not possibly have been any less accurate. Due to the difficulties and
delays we suffered in even getting access to Amazon’s tools, we were behind before we
even started, and had to strike all but the most basic functionality from our plan, which
was so simple to implement that none of us really learned anything. In spite of the
adverse timeline, however, I learned a huge amount about the lifecycle of group projects
as a whole.

The first major life lesson I learned from my time on this project is blaming others
for your own lack of progress is ultimately a waste of everyone’s time. While we did
eventually get access to AWS through our own CS department, rather than through JPL
as originally planned, that access came far too late to allow us to implement most of the
features we’d intended to include. As far as I’'m aware, nobody blames my team under
the circumstances, but the fact remains that we’re unable to deliver a project meeting our
own specifications. In hindsight, we—more specifically, [—should have recognized that
simply waiting for JPL to deliver access as promised was folly, and that it was necessary
to try to get the tools we needed another way. Had any of us realized this sooner, we
would have been able to deliver a much more complete application; the next time I find
myself facing delays beyond my control, I will be much more proactive in finding ways
around the cause of those delays.

Regrettably, I think JPL’s apparent indifference to our project was contagious.
We all struggled to find the motivation to continue working on other aspects of the
project that would be completely irrelevant if, as seemed likely, we weren’t able to build
a backend to tie the entire thing together. But from this I learned yet another life lesson,
which I touched on in my introduction: there are many human factors to consider other
than the immediate technical ability of one’s teammates. This became increasingly
important as the project dragged on with little in the way of progress. Our inability to
even start work on the largest component turned into complete apathy toward the few
things we were able to complete independently. I myself am guilty of that, but I think
many of these motivational issues could have been largely avoided had any of us been
more experienced in managing a team of not just engineers but people. It took us all far
too long to think of each other by name and personality rather than by official position.
As we got to know each other better, we became more comfortable talking about both
this project and entirely unrelated things. Not only did befriending my teammates provide
some intrinsic motivation to work on what seemed to be a doomed project, it also
facilitated substantially more effective communication about the project itself. We

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.

learned to work with one another as human beings, rather than just as engineers, and we
and our project are both better off as a result.

Computer science—and software engineering in particular—has always been
primarily data-driven and reliant on quantifiable metrics. But there is another component
that is never taught in classes and only addressed by the most successful technology
companies—which is perhaps why they are so successful—and that is the human
element. My experience with software over the past academic year is largely irrelevant;
the most valuable things I’ve learned have not been object- but people-oriented. It’s a
shame “social engineering” has such a negative connotation.

4.3 Mariah Martinez

Being part of the JPL Download Manager project was a great learning experience
for me and brought a variety of new tools to the table. Some of the new tools that were
introduced in this project were AWS Services (Cloudfront, RDS, Lambda, Glacier, and
IAM), Apache Maven and AXET/Wget library for Java. These were the tools that were
essential to making our project function efficiently. JPL currently has their data stored in
an S3 bucket hosted by Amazon, so our group had to find a way to efficiently retrieve
and allow the public to have access to that data. JPL is also using their own servers to
handle to requests which would cost too much once this application is disbursed to the
public. Using other Amazon cloud services like Lambda and cloudfront would fix these
issues. To make calls to download the data, we would integrate the AXET Wget library
for java. While two of our team members did have experience with such libraries, I found
it necessary to take the time and learn some of these tools on my own. Cloud storage is
the future and this was the perfect opportunity to dip into this technology.

To get a handle on these new tools, we had one of the more experienced members
give the group a short presentation on the different Amazon services. Since we had a
group of six people, we found it unnecessary and inefficient for everyone to be working
on and learning the cloud tools. This is where we decided that we would split the team
between cloud and GUI implementation. Being team lead, I worked on both teams and
had to learn how to use cloudfront and the AXET/Wget library since that was the only
thing that I was unfamiliar with and would have to implement. While the short
presentation from my team member did prove useful in that we got an overall overview
of what the different services of AWS were and how they worked together, it was not
enough to start thinking about implementation. On my own time I slowly went through
the documentation and tutorials that Amazon Web Services provide. A lot of these
tutorials were more about getting started, running a database and hosting. What helped
me the most was the fact that during my current internship, we just happened to be
moving things around in our S3 Bucket, so I was able to ask a lot of questions and have
first hand experience in the console. JPL was not able to get us access to AWS until
Spring quarter and even then, I was not one of the ones who was given access. Therefore
my only hands on experience was dealing with the console and command line at work.
There was also a tutorial on Lynda.com that proved to be very helpful in learning the
essentials of Amazon Web Services, specifically data services. I was not able to work
through many of these tutorials since I did not have access to JPL’s account but watching

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.

the videos help my understanding of the way these services work together and the basic
calls one needs to make in order to retrieve data. Learning how to use the AXET/Wget
library was not difficult at all. The github page had many samples, one of which we
directly used with our application. There still was a bit of a learning curve with setup, but
Stackoverflow was helpful.

Although it seems odd to say, this learning experience taught me a lot about
learning new things. I learned that learning new technologies takes time and dedication
and an interest. Taking on a new technology means making a commitment to take the
time and learn something from the ground up. Making a commitment like this will not
seem like a big deal if it is something that interest you. Watching videos, going through
tutorials and reading documentation takes a great amount of time. If the interest is not
there and your heart is not in it then it just takes longer for you to get comfortable with
the technology. Another thing I learned from this experience was that reading
documentation and watching videos is not enough to learn a new technology. In order to
actually learn something new, you need hands on experience with it. Luckily I had a little
bit of that hands on experience at work, but it did not touch every service that we were
using for this project. When learning things in the future I will definitely make sure that I
follow along with the tutorial first hand so that I can learn more efficiently and run into
problems that I need to learn how to fix that do not come up when watching or reading
tutorials.

4.4 Gregory Miles

Before starting the senior design year long experience, I had very little knowledge
about the cloud buzzword. Prior to senior design my knowledge of cloud services
extended to the idea that servers are remotely provided for by a third party company. My
general assumption is that one would SSH into the server. My senior design team, the
Jet Propulsion Laboratory (JPL) Download Manager, made use of Amazon Web Services
(AWS) to provide the server side services and infrastructure. We made use of AWS to
provide for storage and content distribution of very large GeoTIFF images which are part
of the JPL Lunar Mapping and Modeling Portal (LMMP). Additionally, prior to senior
design my knowledge of web design and web based application level services was mostly
limited to what I had learned in CS320 and CS120. By reading through documentation,
listening to teammates and watching AWS youtube tutorials [was able to gain a much
clearer idea of how cloud services actually work. On a more abstract level I learned
about learning technical information beyond the buzzwords.

AWS provides much more than just remote servers to SSH into, they provide a
whole range of services, all of which have Application Programming Interfaces (API) to
allow automation via software of the services. Included in these services are AWS S3,
AWS Lambda, AWS RDS, AWS EC2 and many others. AWS EC2 (Elastic Compute
Cloud) comprises what I initially thought cloud services were about, they provide servers
which one can SSH into and build services through. What [wasn't aware of before
beginning senior design is all the other aspects of AWS, including the API and Software
Development Kits (SDK)s that are provided. For example, with AWS EC2 one can use
the API to control how long a given server is up and to spin up a new instance of a server

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
10

based on different events through the API. Additionally, there are services such as AWS
Lambda, which provide microsecond priced computing, so one does not even need to
take care of an actual server instance, which might include security issues such as SSH
key safety or time needed to setup a environment, and only worry about uploading the
code needed for a given event. While my team initially had a much more complex plan
we ended up focusing on AWS S3 for storage services and AWS Cloudfront for a
Content Distribution Network (CDN). AWS S3 would store the images and provide as
the distribution point for the initial download from the client, and further downloads
would be made from servers which have cached the download as part of AWS
Cloudfront CDN.

To learn about AWS services, the primary place I read through was the various
AWS documentation pages, while I was also assisted with by my teammate who had
prior knowledge of AWS services, Rowan Edge. Rowan Edge was already very
knowledgeable about AWS services prior to the start of the project and was the
architectural lead along with being the main decision maker behind technology decisions.
During team meetings Rowan Edge would discuss various aspects of AWS a great length,
after the meetings I would look up in the documentation what he had discussed and what
was required to implement the AWS technology discussed in the meeting. In general, |
learned that by investigating the buzzwords and figuring out what actual services are
behind them that it is a great way to build one's ability to discern the actual practical
technological aspects of a project.

Learning new technical things requires day to day dedication and allocating time
to go through documentation, manuals and specifications. Software initially made as a
demo can turn into an advanced and complete software project. By building on a
software project everyday what starts off as a simple piece of software base can grow to
be very advanced. A prerequisite of the AWS side of the project was to go through the
API documentation and online examples. It might seem that reading documentation is a
waste of time and it is better to just start writing code. I have learned that documentation
is very important and spending extra time going through technical documentation,
specifications and standards can save time and provide a better end product. While going
through documentation however, it is important to skim through the parts which will
likely not be used, make note of interesting portions which might be used and spend a
large amount of time on documentation which will definitely be used. Reading technical
documentation and manuals becomes a skill which is vital to learning new technologies.

Additionally, I have learned it is better to cope with problems instead of
complaining about them. For example, for our senior project we had many delays for
various reasons. The main reason was that our customer, JPL was going to provide AWS
access but was unable to. While this might seem like something to complain about and
blame other people, it can also be looked on as a way to learn new things. I have learned
that it is better to figure out ways to remedy technical setbacks instead of blaming people.
For example, a code base can be built, documentation can be gone through, modules can
be planned out in more detail and planning out exactly who will be responsible for what
can be done without requiring any external help. By the time I realized this however, our
team had spent a great deal of time waiting for the sponsors to help setup the AWS
access. I realized that it would have been much more productive if we had started on

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
11

building the other parts of the project than on blaming the sponsors. My main lifelong
learning takeaway is that on technical projects it is best to get started doing as much work
as possible as soon as possible even if there are resource setbacks.

Buzzwords are often very powerful technologies but it is important to understand
what the pros and cons of those technologies are. For example, AWS cloud services are
very useful and can be made to quickly build scalable web services and can provide the
back-end for many software services which otherwise might require large amounts of
infrastructure to be built. I learned that AWS has many APIs which abstract away from
the infrastructure beneath and provide a developer with a quick and easy way to integrate
their software with a AWS service, such as building a API by using an AWS API
endpoint and AWS Lambda. Cons to AWS include that it might be difficult for some
organizations to reconcile AWS with their security and funding requirements, the long
term pricing structure might not appeal to some organizations and AWS APIs can end up
in “vendor lock-in”. Vendor lock-in happens when a convenient API is included in a
large software project and there is a sudden price jump in the cost of the API service but
it is unfeasible for an organization to modify the software to not use the API. Another
con of cloud services is that an organization might prefer to use preexisting infrastructure
instead of cloud computing. I have learned that while there are many pros to using cloud
services keeping these cons in mind is important when designing a large software system
and it might be feasible to include a back-up design in the plan. For example, it might
have been feasible for us to have included a design which did not use cloud services,
particularly when there were resource setbacks. I also learned that going through the
documentation with a mind to solve the problem at hand will save time in the long run.
Additionally, I have learned that it is best to start working around setbacks instead of
letting setbacks set the schedule. I am now confident that I understand cloud services and
particularly AWS services. I can understand the line that divides the buzz and the
marketing of the buzzword.

4.5 Adrian Rendon

Four to five years of going to school at a University, in the field of a major such
as computer science, can leave a senior student like me with a lengthy array of things
they learned. Some concepts or technologies are more important than others but,
nevertheless, I value everything I learned throughout my years of school here at Cal State
LA. From the basics of web and Java programming to the complicated and painful world
of Computer Graphics, I value it all. Of course there are a couple technologies in the
world of Computer Science that I have learned and find to be more important than others.
Out of all the technologies I deem to be more important, I would have to say that the
most important was being able to understand and use Git and GitHub to manage source
code for my school and work projects. The understanding and importance of these two
technologies was further stressed thanks to the senior design project.

Git and GitHub are two technologies that are different but at the same time can go
hand in hand with each other. Git is a revision control system, which basically means it is
a tool to manage source code history. GitHub is a hosting service for Git repositories; it
offers all of the distributed revision control and source code management functionality as

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
12

Git in addition to adding its own features. I never thought it would be such an important
tool. The only reason I took it upon myself to learn how to use them is because I realized
that many developer companies use Git and/or GitHub to manage their software. It was
not until [used it in a couple of my classes, at work, and Senior Design that I realized
how useful and powerful these two technologies can be. One clear example of this for me
was when my senior design group and I were using it to create the main GUI component
of our project. Our team lead created the “skeleton” of the GUI and delegated the rest of
the work to three of us, myself included. Among us three we split the work evenly and
decided to each create different branches of the main GUI skeleton and add our own
work in there. When we finished, our team lead merged all three branches together and
just like that our GUI component was almost nearly done. When I pulled the master
branch onto my computer and ran the program, I was amazed to see how the features I
added were all there along with what my other teammates added on their own.
Furthermore, I was amazed by the fact that the process of merging our three branches
together was really quick and easy. This was when I realized how important of a tool this
was not only for school other school projects but also why many developer companies
rely on this technology to manage their source code. At my current work I created a
ticketing support form system along with administrator page that manages it. I originally
created it without the use of GitHub and, if I had to be honest, it was hard to keep track of
everything I changed or fixed. After I realized how important these technologies are, I
decided to put my source code in a Git repository and manage it through GitHub. Now
every time I add a new feature or make some changes to the system, I use branches to
manage the changes I have made to the source code. It helps to keep me organized and at
the same time makes me feel secure about changing the source code that currently works.

As I stated earlier, I never thought Git and GitHub would be as important as I now
believe they are. [first heard about those technologies my second year during my CS203
class but never thought much of it out of ignorance. It was later brought up again by one
of my close friends during the Spring Quarter of my third year. I made an account at that
time but never used it or thought about using it until the following Fall Quarter of my
fourth year and the start of senior design. It was during this time when I realized I should
put forth more effort to learn it for my own good and for the good of my senior design
project. At first I found it very confusing. The brief online research I did on it didn’t
really do much to help me so called on my friend to help me learn how to use Git and
GitHub. He had already been using those technologies for about two years so he knew his
way around how to use the Git commands on the terminal and how to incorporate the use
of GitHub. With his help I was able to get a proficient understanding on how to use these
technologies and, more importantly, when to use them.

Learning new things is generally exciting, at least for me personally. When it
comes to learning something new I learned you need to have the motivation to take the
time and actually learn whatever it is you want to learn. If you say you want to learn a
new technology but lack the motivation to follow through and learn it, then you will be in
the same state you were before. When you have motivation to learn something new then
you have to be able to use all the resources you have available to help you learn. This
should not be limited to self research that can be found when using the internet because it
does not always have the best or easiest answer. Sometimes it can be easier to rely on

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
13

asking help from fellow peers. In my case I asked my close friend for help and I also
asked for help from my team lead. It made learning how to use Git and GitHub much
faster and easier. | honestly believe this approach is the best when it comes to learning
new technologies. I had a job interview not too long ago and was asked how I would go
about learning a new language. I more or less stated the same thing I did here and my
interviewer later told me that is probably one of the best ways to go about it.

I learned about a few new technologies because of senior design. I learned about
JavaFX and the many services that Amazon Web Services provides. But as I have stated,
Git and GitHub were the most important for me. It is something every serious computer
science major looking for a real life job should have a proficient understanding of. I will
use everything I have learned throughout my years at school and the real life experience
given to me by my senior design project to help me improve my own skills and have a
healthy approach to learning new things.

4.6 Kevin Tu

I have learned so much throughout the year in Senior Design. But what I’ve
learned in the way of software tools have been helpful and I would imagine be useful in
future projects I encounter. The main tool or software library I’ve had to use during the
year has been JavaFX on E(fx)clipse. It is similar to Java to which I was familiar with
given all the courses I have taken over the years. JavaFX is a library that was created to
specialize in creating graphical user interfaces for desktop applications. Another tool was
GitHub where everyone could merge their code in an efficient and effective manner. I
was not entirely comfortable in using github as at the time it was pretty new to me,
however, it proved to be very useful. Communication through Slack and Google
Hangouts were extremely helpful in coming up with plans for the project.

Starting with JavaFX, learning it was simple since it is very similar to Java. There

was even a simple to follow tutorial on the JavaFX website which made the transition
even easier. The tutorial started with the windows and progressing to tables, buttons, and
pop ups so it was a great start to learn before creating the GUI which involved most of
those elements. The main thing to learn was its large pool of available classes for each
part of the GUI that we needed. Classes for features such as the tables, the text boxes, and
the assortment of buttons were full of customization options. Choosing the right classes
that would be adequately useful for our GUI required a Google search and trial and error
during implementation. Sometimes [would look up online videos to get a better visual
understanding of the classes and the capabilities of JavaFX.

I programmed using E(fx)clipse which provided JavaFX tooling and framework
for the Eclipse IDE. I have used Eclipse for most if not all of my Java programs over the
years so I was most familiar with its environment. Overall making the start of the
project’s coding much easier to begin. Since coding was not on completely new grounds

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
14

or concepts, it did not require as much learning as picking up a new programming
language.

Github was a tool that I recently started using going into the project earlier in the
year. | have not found myself using it as much before since team projects were infrequent
and often did not rely on coding as a big part of the project. Opposed to manually syncing
up code line by line, GitHub definitely makes it less of a hassle. However, I honestly
found it tricky to work with at first. The terminology and certain functions were a bit
vague so I could not use github to its fullest. After many attempts I stumbled upon EGit
where it is the integration of Git for the Eclipse IDE. In one place, I was able to push
code to and pull code from my team’s repository within E(fx)clipse.

Communication is important between the team and between clients and advisors.
The tools, Slack and Google Hangouts definitely made that much easier than being in
person or back and forth emails. Slack was new to me but with much needed
communication at all times, it was immensely convenient. Notifications on my phone
made sure messages were available to me right as it was created. It was relatively simple
to setup with no hassle. Next thing I know the group was able to communicate whenever
and wherever with a connection to the internet, by phone or computer. I was new to Slack
and the team basically introduced me to it. I can see myself using it for future projects or
among other things that would require quick communication. Google Hangouts was our
communication with the liaison and advisors for the Spring Quarter. Another simple way
to communicate across pretty much anywhere and with its voice chat and face cam
features it created a quick way to simulate an in person meeting. Google Hangouts was
nothing new to me, but Google applications including Google Hangouts were also
extremely useful. Google Drive, Google Docs, Google Slides, Google Calendar were
used together and provided an easy work environment. I was familiar with these Google
applications so again there was no real learning to do other than using them to complete
our assignments. But similar to GitHub it allowed us to work on written portions of the
project like presentation slides and documentation together at the same time on the same
document.

What I learned about learning during this project is that it could either take a long
time or a short time to learn certains tools and libraries. I would imagine if I had not
learned Java over the years JavaFX would have been troublesome to use. But having
learned Java played a big part in why it was used in the first place. Although obvious, the
more documentation and tutorials a tool has the easier it is to understand to use it. JavaFX
had plenty on its own website and tutorials expanded even further thanks to Youtube
where user create their own tutorial from the basic to the more niche features of the
library. EGit had a more vague tutorial and its user base from what I understand was not
as large so other tutorials were far and in between. I was able to work with EGit however,
I feel like I could use it more effectively if there was a more clear tutorial. As of now, I

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
15

use some of its features that I am able to understand and kind of workaround certain
aspects of it. Learning is important to grow as a person and further improve one’s
efficiency in their work.

This project has had me learning many things from tools, software libraries, and
among others involving working in a software project with a team and clients. I can
definitely say that what I have learned throughout the year will be used to improve
myself and my future endeavors in the field of Computer Science.

Section S: Architecture and Design

Compression
Encryption

The main components of this Download Manager, shown in the DFD above, each belong
to one of three major categories: security, storage, or distribution.

Security

Security and permissions, for both users and files, are managed and enforced by IAM.
RDS is used to store metadata and encryption keys for each file; access to RDS is also
enforced by IAM.

Storage

By default, all files are located in S3. EC2 can be used as necessary to compress and/or
encrypt files in-place. If a file is not accessed frequently, it can be archived to Glacier to
reduce costs.

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
16

Distribution

Files cannot be served directly from S3; a CloudFront distribution ensures that any
download request will be checked against the local edge node’s cache; if the file is not
already in the cache, it will be added during the download. Lambda is used for all other
communication between the client and the Amazon services.

REST API

The meta-data REST API was accomplished via AWS Elasticsearch (Not shown in
diagram). All meta-data was web scraped from web pages accessed via the LMMP API
and uploaded to AWS Elasticsearch. Elasticsearch provides advanced query capabilities
and data analysis.

Section 6: Conclusion

Just like many other senior design groups in our graduating class and all the ones before
us, we as a group faced many challenges throughout the course of this Senior Design
project. The requirements for our JPL Download Manager were many and essentially
each were a challenge for our team in one way or another. Now that we have reached the
end of this project, we can look back at all that we accomplished and all that we
unfortunately could not accomplish. We now have the insight all the lessons we learned
throughout this project and be able to say what could have been changed or added to the
project to help make it more complete.

Our main goal was always to be able to download a file through a type of
download manager. And we succeeded in accomplishing that main goal. We were able to
create a visually appealing GUI that is able to pause, resume, and stop downloads. It is
able to handle filtering of items listed in the database and the ability to handle editing
individual user accounts. Requirements we failed to produce would include automatic
scheduling of downloads, the integration of individual user accounts through AWS 1AM,
encryption of specific files, and the ability to limit download speed in order to prevent the
use of the entire available bandwidth.

There is no way to mention the requirements we failed to produce without
mentioning the challenges we faced. Without a doubt, the most difficult challenge we
faced was the amount of time we had to wait to gain AWS access. Not having AWS
access really slowed down the productivity of our team during Winter Quarter. We were
on schedule the first 4 to 5 weeks where we spent ample time completing the GUI
component of the JPLDM. Once we got AWS access, only 2 of our 6 members were able
to access it, and only 1 of the 2 actually had the full ideal permissions needed to test our
project. Among other challenges, a common challenge we all faced was being able to
figure out times we can meet given our busy school and work schedules.

All in all, regardless of challenges faced, there many important lessons we as a
team learned because of this senior design project. The main lesson being that delays in a
big project can happen. As a team, once we were able to gain AWS access, we worked as
best as we could to do as much as we could before our deadline date. Although we were
not able to implement everything we proposed we were able to experience something that

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
17

can frequently occur in industry. And that experience is one of the most valuable real
world experiences gained because of this project. Thanks to the experience we all gained
from working on the JPLDM we are more prepared to put these experiences to use when
we begin our professional careers as computer scientists.

Section A: ACRONYMS

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian
Rendon & Kevin Tu, May 2016.
18

AM Authentication Module

AWS Amazon Web Services

CDN Content Distribution Network

DMC Download Manager Client

DM Distribution Module

ECM Encryption/Compression Module

JPLDM Jet Propulsion Laboratory Download Manager
RA Rest API

SM Storage Module

LMMP Lunar Mapping and Modeling Project

Documentation for the JPL Download Manager (JPLDM) by Abdias Andres, Rowan Edge, Mariah Martinez, Gregory Miles, Adrian

Rendon & Kevin Tu, May 2016.

19

